Trehalose-6-phosphate synthase (TPS) and trehalase (TRE) directly regulate trehalose metabolism and indirectly regulate chitin metabolism in insects. Real-time quantitative PCR (RT-qPCR) and RNA interference (RNAi) were used to detect the expressions and functions of the ApTPS and ApTRE genes. Abnormal phenotypes were found after RNAi of ApTRE in the Acyrthosiphon pisum. The molting deformities were observed in two color morphs, while wing deformities were only observed in the red morphs. The RNAi of ApTPS significantly down-regulated the expression of chitin metabolism-related genes, UDP-N-acetyglucosamine pyrophosphorylase (ApUAP), chitin synthase 2 (Apchs-2), Chitinase 2, 5 (ApCht2, 5), endo-beta-N-acetylglucosaminidase (ApENGase) and chitin deacetylase (ApCDA) genes at 24 h and 48 h; The RNAi of ApTRE significantly down-regulated the expression of ApUAP, ApCht1, 2, 8 and ApCDA at 24 h and 48 h, and up-regulated the expression of glucose-6-phosphate isomerase (ApGPI) and Knickkopf protein (ApKNK) genes at 48 h. The RNAi of ApTRE and ApTPS not only altered the expression of chitin metabolism-related genes but also decreased the content of chitin. These results demonstrated that ApTPS and ApTRE can regulate the chitin metabolism, deepen our understanding of the biological functions, and provide a foundation for better understanding the molecular mechanism of insect metamorphosis.
Bradysia cellarum Frey and Bradysia impatiens Johansen are major pests of vegetable crops, as well as edible mushrooms and ornamental plants, and damage to hosts resulting in economic losses. Temperatures above the optimum levels for these pests have been predicted to regulate their population growth during summer. The aim of the present study was to examine the effects of both heat stress and exposure time on the growth and development of eggs, larvae and pupae for two Bradysia species. The egg stage, egg hatching rate, 4th instar larval stage, pupation rate, pupal stage and adult emergence rate were observed after exposing at high temperatures of 34°C, 37°C and 40°C for 1, 2, 4 and 6 hr. The results showed that 34°C, 37°C and 40°C for 1‐, 2‐, 4‐ and 6‐hr exposure treatments prolonged the developmental stage of egg, 4th instar larva and pupa, while decreasing the egg hatching rate, pupation rate and adult emergence rate. This suggests that increasing temperature or prolonging exposure time to the heat stress could significantly affect insect survival, growth and development. Our study could provide an ecological basis for pests’ management strategy by using short‐term heat stress.
In order to investigate the effects of artificial diets on the population growth of root maggot Bradysia impatiens, its population growth parameters were assayed on eight artificial diets (Diet 1, D2, D3, D4, D5, D6, D7, and D8). Results showed that developmental duration from egg to pupa was successfully completed on all eight artificial diets. However, the egg to pupal duration was shortest, while the survival rate of four insect stages was lowest when B. impatiens was reared on D1. When B. impatiens was reared on D7 and D8, the survival rate, female longevity, and female oviposition were higher than those reared on other diets. When B. impatiens was reared on D7, the intrinsic rate of increase (rm = 0.19/d), net reproductive rate (R0 = 39.88 offspring per individual), and finite rate of increase (λ = 1.21/d) were higher for its population growth with shorter generation time (T = 19.49 d) and doubling time (Dt = 3.67 d). The findings indicate that the D7 artificial diet is more appropriate for the biological parameters of B. impatiens and can be used an indoor breeding food for population expansion as well as further research. We propose that vitamin C supplement added to the D7 is critical for the improvement of the B. impatiens growth.
As a poikilothermic animal, insects are sensitive to temperature fluctuation (Julie & Robby, 2019;Kang et al., 2009;Shi et al., 2017). Effects of temperature on insects are mainly on development rate, body weight, body size, fecundity and metabolic rate (Rungtip et al., 2020;Shi et al., 2011). In nature, there are three temperature regimes for insects and other exothermic organisms (such as arachnids, reptiles and plants): low temperature regime, suitable temperature regime and high temperature regime (Shi et al., 2011). Different insect species have different temperature ranges in their suitable temperature regimes. For the bird cherry-oat aphid Rhopalosiphum padi, the developmental rate was accelerated, and the developmental duration was shortened within 15-30°C (Chen et al., 2015). When the small brown planthopper Laodelphax striatellus was reared at 18-27°C, the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.