The triplet-state characteristics of the Cy5 molecule related to trans-cis isomerization are investigated by means of ensemble and single molecule measurements. Cy5 has been used frequently in the past 10 years in single molecule spectroscopic applications, e.g., as a probe or fluorescence resonance energy transfer acceptor in large biomolecules. However, the unknown spectral properties of the triplet state and the lack of knowledge on the photoisomerization do not allow us to interpret precisely the unexpected single molecule behaviors. This limits the application of Cy5. The laser photolysis experiments demonstrate that the trans triplet state of Cy5 absorbs about 625 nm, the cis ground state absorbs about 690 nm, and the cis triplet state also absorbs about 690 nm. In other words, the T1-Tn absorptions largely overlap the ground-state absorptions for both trans and cis isomers, respectively. Furthermore, the observation of the cis triplet state indicates an important isomerization pathway from the trans-S1 state to the cis-T1 state upon excitation. The detailed spectra presented in this article let us clearly interpret the exact mechanisms responsible for several important and unexpected photophysical behaviors of single Cy5 molecules such as reverse intersystem crossing (RISC), the observation of dim states with a lower emission intensity and slightly red-shifted fluorescence, and unusual energy transfer from donor molecules to dark Cy5 molecules acting as acceptors in single molecule fluorescence resonance energy transfer (FRET) measurements. Spectral results show that the dim state in the single molecule fluorescence intensity time traces originated from cis-Cy5 because of a lower excitation rate, resulting from the red-shifted ground-state absorption of cis-Cy5 compared to that of the trans-Cy5.
BackgroundNicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD+) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms.MethodsWe fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ± 0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation.ResultsWe found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD+ levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol.ConclusionsNR can protect against ethanol induced liver injuries via replenishing NAD+, reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol.
The photophysical properties of two newly synthesized photoactive compounds with asymmetrical D-π-A structure and symmetrical D-π-A-π-D structure are investigated in different aprotic solvents by steady-state and femtosecond fluorescence depletion measurements. It is found that the asymmetrical DA compound has larger dipole moment change than that of the symmetrical DAD compound upon excitation, where the dipole moments of the two compounds have been estimated using the Lippert-Mataga equation. Furthermore, the steady-state spectral results show that increasing solvent polarity results in small solvatochromic shift in the absorption maxima but a large red shift in the fluorescence maxima for them, indicating that the dipole moment changes mainly reflect the changes of dipole moment in excited-state rather than in ground state. The redshifted fluorescence band is attributed to an intramolecular charge transfer (ICT) state upon photoexcitation, which could result in a strong interaction with the surrounding solvents to cause the fast solvent reorganization. The resulting ICT states of symmetrical compounds are less polar than the asymmetrical compounds, indicating the different extents of stabilization of solute-solvent interaction in the excited state. Femtosecond fluorescence depletion measurements are further employed to investigate the fast solvation effects and dynamics of the ICT state of these two novel compounds. The femtosecond fluorescence depletion results show that the DA compound has faster solvation time than that of DAD compound, which corresponds to the formation of relaxed ICT state (i.e., a final ICT state with rearranged solvent molecules after solvation) in polar solvents. It is therefore reasonably understood that the ICT compounds with asymmetrical (D-π-A) structure have better performance for those photovoltaic devices, which strongly rely on the nature of the electron pushpull ability, compared to those symmetrical compounds (D-π-A-π-D).
The optical spectra of the dimethoxy-p-phenylene-ethynylene oligomers (up to n ) 10) are calculated by DFT and TD-DFT methods. It is found that the conformational rotations around the cylindrical triple-bonded carbon links impact significantly the optical spectrum. The effective conjugation length (ECL) of the oligomer is obtained by extrapolating the HOMO-LUMO gap to infinite chain length with an alternative exponential function. The spectral shift is mainly dependent on the high π-conjugation segment of oligomers, resulting from the planarization of the backbone. Although the rotational barrier is very low, the calculated results further indicate that rotation about the cylindrical triple bond still interrupts the conjugation of rod-like oligomers to some extent, and leads to an angle-dependent HOMO-LUMO gap. The results are helpful to interpret the conformational-dependent spectroscopic phenomena of p-phenyleneethynylene oligomers and polymers (PPEs) observed in ensemble and single molecule spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.