To identify new genetic risk factors for cervical cancer, we conducted a genome-wide association study in the Han Chinese population. The initial discovery set included 1,364 individuals with cervical cancer (cases) and 3,028 female controls, and we selected a 'stringently matched samples' subset (829 cases and 990 controls) from the discovery set on the basis of principal component analysis; the follow-up stages included two independent sample sets (1,824 cases and 3,808 controls for follow-up 1 and 2,343 cases and 3,388 controls for follow-up 2). We identified strong evidence of associations between cervical cancer and two new loci: 4q12 (rs13117307, Pcombined, stringently matched=9.69×10(-9), per-allele odds ratio (OR)stringently matched=1.26) and 17q12 (rs8067378, Pcombined, stringently matched=2.00×10(-8), per-allele ORstringently matched=1.18). We additionally replicated an association between HLA-DPB1 and HLA-DPB2 (HLA-DPB1/2) at 6p21.32 and cervical cancer (rs4282438, Pcombined, stringently matched=4.52×10(-27), per-allele ORstringently matched=0.75). Our findings provide new insights into the genetic etiology of cervical cancer.
This study focuses on the preparation of a CaTiO3-coated nano-CaO-based CO2 adsorbent (CaTiO3/nano-CaO) for the improvement of sorption properties. The CaTiO3-coated nano-CaO adsorbent was prepared by forming Ti(OH)4 from the hydrolysis of titanium alkoxide in a nano-CaCO3 suspended solution. The resulting Ti(OH)4-coated nano-CaCO3 was then heated and calcined. Test results from transmission electron microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy show that an obvious film of TiO2 was formed on the surface of nano-CaCO3 after heating. X-ray diffraction analysis also showed that the nano-CaTiO3 layer was formed at 750 °C, a calcination temperature that causes the reaction of TiO2 with nano-CaO. The cyclic tests of reactive sorption capacity were conducted in a thermogravimetric analyzer under the following conditions: 0.02 MPa CO2 partial pressure, carbonation temperature of 600 °C, and calcination temperature of 750 °C. Test results showed that CaTiO3 coated onto the nano-CaO caused a significant improvement in the durability of the capacity for reactive sorption. Nano-CaO that had an optimum content of 10 wt % TiO2 showed significantly stable CO2 reactive sorption capacity (5.3 mol/kg) after 40 cyclic carbonation−calcination runs compared to the reactive sorption capacity of CaO without TiO2 coating (3.7 mol/kg).
Epithelial ovarian cancer (EOC) is a highly lethal gynecological malignancy, and cisplatin resistance is usually correlated with the poor prognosis of EOC. Increasing evidence indicates that the dysregulation of miRNAs is related to chemotherapy sensitivity. In this study, we revealed that miR-98-5p, a member of the let-7 family, was enriched in cisplatin-resistant EOC cells compared with cisplatin-sensitive cells, and could promote cisplatin resistance in EOC cells. Further studies showed that miR-98-5p could directly target the 3′-UTR of Dicer1 and suppress its expression, causing global miRNA downregulation. By miRNA array and qRT-PCR verification, we identified miR-152 as the vital downstream target of the miR-98-5p/Dicer1 axis in EOC cells. Moreover, we demonstrated that the ectopic expression of miR-152 reversed cisplatin resistance both in vitro and in vivo by targeting RAD51, a central member in homologous recombination. Importantly, miR-98-5p expression, as determined by in situ hybridization in tumor tissues, was associated with poor outcome of EOC patients. Together, these findings suggest the essential role of the miR-98-5p/Dicer1/miR-152 pathway in regulating cisplatin resistance of EOC cells and provide a potential target for EOC therapy.
Background Lymph‐vascular space invasion (LVSI) is an unfavorable prognostic factor in cervical cancer. Unfortunately, there are no current clinical tools for the preoperative prediction of LVSI. Purpose To develop and validate an axial T 1 contrast‐enhanced (CE) MR‐based radiomics nomogram that incorporated a radiomics signature and some clinical parameters for predicting LVSI of cervical cancer preoperatively. Study Type Retrospective. Population In all, 105 patients were randomly divided into two cohorts at a 2:1 ratio. Field Strength/Sequence T 1 CE MRI sequences at 1.5T. Assessment Univariate analysis was performed on the radiomics features and clinical parameters. Multivariate analysis was performed to determine the optimal feature subset. The receiver operating characteristic (ROC) analysis was performed to evaluate the performance of prediction model and radiomics nomogram. Statistical Tests The Mann–Whitney U ‐test and the chi‐square test were used to evaluate the performance of clinical characteristics and LVSI status by pathology. The minimum‐redundancy/maximum‐relevance and recursive feature elimination methods were applied to select the features. The radiomics model was constructed using logistic regression. Results Three radiomics features and one clinical characteristic were selected. The radiomics nomogram showed favorable discrimination between LVSI and non‐LVSI groups. The AUC was 0.754 (95% confidence interval [CI], 0.6326–0.8745) in the training cohort and 0.727 (95% CI, 0.5449–0.9097) in the validation cohort. The specificity and sensitivity were 0.756 and 0.828 in the training cohort and 0.773 and 0.692 in the validation cohort. Data Conclusion T 1 CE MR‐based radiomics nomogram serves as a noninvasive biomarker in the prediction of LVSI in patients with cervical cancer preoperatively. Level of Evidence : 4 Technical Efficacy : Stage 2 J. Magn. Reson. Imaging 2019;49:1420–1426.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.