The determination of a reliable tortuosity index is lacking in the aerospace industry. Therefore, a methodology is formulated via direct and indirect characterization methods of a fluid-filled porous media. Chemical, thermal, and mechanical characterization was performed to the PolyuMACTM polyimide foam. Tortuosity was measured considering a pressure difference as the resistivity variable, rather than electrical resistivity or molecular diffusivity, as proposed on previous models. This is an empirical establishment of the tortuosity index considering the correlation among hydraulic and structural dimensionless parameters obtained through the Buckingham’s Pi theorem. The behavior of the polyimide was studied for samples of different lengths compressed at 30%, 60%, and 90% of its original length on the foaming direction. Results show that, porosity, sample length, and fluid viscosity are relevant for the insulation performance of the material. Regression analysis produced a significant statistical model fit to the data correlated from the dimensionless parameters for each dynamic compression series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.