The word “textile” means to weave and was taken from the Latin word “texere.” Nowadays, textiles not only fulfill humankind's basic necessity for clothing, they also allow individuals to make fashion statements. As one of the oldest industries, the textile industry occupies a unique place in India. It is responsible for 14% of the total industrial manufacture in India. However, the textile industry is also considered to be one of the biggest threats to the environment. Pretreatment, dyeing, printing, and finishing operations are among the various stages of the industrial textile manufacturing process. These fabrication operations not only utilize huge quantities of power and water, they also generate considerable amounts of waste. The textile industry utilizes a number of dyes, chemicals, and other materials to impart the required qualities to the fabrics. These operations produce a significant amount of effluents. The quality of effluents is such that they cannot be put to other uses, and they can create environmental problems if they are disposed of without appropriate treatment. This review discusses different textile processing stages, pollution problems associated with these stages, and their eco‐friendly alternatives. Textile wet processing is described in detail, as it is the key process in the industry and it also generates the greatest amount of pollutants in textile processing. The environmental impact of textile effluents is discussed, as textile effluents not only impose negative effects on the quality of water and soil, they also imperil plant and animal health. In this paper, various methods for treating textile effluents are described. Discussion of physical, chemical, biological, and advanced treatment technologies of effluent treatment are included in this paper.
This study is aimed to assess the groundwater excellence within the rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh, India. In the current work, estimation of groundwater excellence indices has been done to recognize the water quality for the appropriateness of groundwater resource for drinking and agricultural use. Twenty groundwater samples were collected and investigated for diverse geochemical parameters viz, pH, total dissolved solids (TDS), total hardness, cations and anions. The groundwater of the study region is neutral to slightly alkaline in nature. Piper's diagram classification shows that majority of the samples belong to CaMgHCO 3 hydrochemical facies. Gibbs plot specifies that majority of samples falls in rock dominance. The water quality index shows that the entire sample is under excellent water category. On the basis of TDS, all the samples are within the range of desirable to permissible for drinking and agriculture purpose. Forty percent samples of the study region are having nitrate content more than permissible limit (>50 mg/l) which is not fine for individual use. Poor drainage, domestic waste and use of N fertilization on farming land may be the main sources of nitrate in groundwater of the study region. On the basis of different water quality indices, groundwater of the study region is fit for agricultural use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.