SUMMARYTwo photomorphogenic mutants of rice, coleoptile photomorphogenesis 2 (cpm2) and hebiba, were found to be defective in the gene encoding allene oxide cyclase (OsAOC) by map-based cloning and complementation assays. Examination of the enzymatic activity of recombinant GST-OsAOC indicated that OsAOC is a functional enzyme that is involved in the biosynthesis of jasmonic acid and related compounds. The level of jasmonate was extremely low in both mutants, in agreement with the fact that rice has only one gene encoding allene oxide cyclase. Several flower-related mutant phenotypes were observed, including morphological abnormalities of the flower and early flowering. We used these mutants to investigate the function of jasmonate in the defence response to the blast fungus Magnaporthe oryzae. Inoculation assays with fungal spores revealed that both mutants are more susceptible than wild-type to an incompatible strain of M. oryzae, in such a way that hyphal growth was enhanced in mutant tissues. The level of jasmonate isoleucine, a bioactive form of jasmonate, increased in response to blast infection. Furthermore, blastinduced accumulation of phytoalexins, especially that of the flavonoid sakuranetin, was found to be severely impaired in cpm2 and hebiba. Together, the present study demonstrates that, in rice, jasmonate mediates the defence response against blast fungus.
Sandal et al. MPMI 4 INTRODUCTIONGenetic analysis and application of genetic approaches in the model legume Lotus japonicus (Handberg and Stougaard 1992) has progressed rapidly. Several key genes important for symbiosis with mycorrhizal fungi, root nodule development and other developmental processes have been identified using molecular genetics. The developmental regulators Nin (Schauser et al. 1999) and Pfo (Zhang et al. 2002) were isolated by transposon tagging while map-based cloning led to the molecular characterisation of Har1, SymRK, Nfr1, Nfr5, Castor and Pollux involved in autoregulation, Nod-factor signal perception or signal transduction (Schauser et al. 1999, Krusell et al. 2002 Nishimura et al. 2002a;Stracke et al. 2002;Radutoiu et al. 2003;Madsen et al. 2003; Imaizumi-Anraku et al. 2005). Genetic loci required for the early stages of endosymbiosis have attracted particular interest. Diallelic crosses together with phenotypical studies defined seven loci, SymRK, Nup133, Castor, Pollux, Sym6, Sym15,Sym24, in the common pathway required for both rhizobial and mycorrhizal symbiosis (Kistner et al. unpublished data) and map-based cloning of these loci has been accomplished or is advancing rapidly. A similar interest and effort is now emerging for genetic dissection of nodule organogenesis and function using the Fix -mutants arrested at various stages of nodule development or impaired in nodule function. Cloning of the Sst1 sulfate transporter required in functional root nodules is a first example (Krusell et al. 2005).Continuous isolation of new plant mutant lines is important for completing the genetic dissection of symbiosis and so far six independent mutant populations have been obtained by chemical (EMS) mutagenesis (Perry et al. 2003;Szczyglowski et al. 1998; Webb et al. unpublished data; Gresshoff et al. unpublished data), four populations after T-DNA or transposon insertion mutagenesis (Thykjaer et al. 1995;Schauser et al. 1998;Webb et al. 2000; Gresshoff et al. unpublished data), one population made with fast neutrons (Gresshoff et al. unpublished Umehara and Kouchi (unpublished data). All in all more than 400 symbiotic Lotus mutant lines were identified by screening in these populations and more are likely to follow. Assignment to complementation groups is next logical step in order to determine the number of loci involved, identify all alleles that contribute to phenotypic characterisation of mutants and genotyping of loci. However, diallelic crossing is a relatively slow process where progress is determined by generation time and slowed by a continuously increasing number of individual crosses necessary to keep up with mutant isolation programs. Given the number of symbiotic mutant lines already available and considering the time used to define seven complementation groups with a total of 26 alleles constituting the common pathway (Kistner et al. unpublished data), this approach is unlikely to encompass all alleles in near future. Detection of alleles in already cloned genes ...
Bloodstream infection (BSI) is a severe complication in immunocompromised patients. Next-generation sequencing (NGS) allows us to analyze comprehensively and quantitatively all microorganisms present in a clinical sample. Thirty-five pediatric patients (12 with BSI and 23 with suspected BSI/negative blood culture) were enrolled. Plasma/serum samples were used for sequencing and the results were compared with those from blood culture. Sequencing reads of bacteria isolated in blood culture were identified by NGS in all plasma/serum samples at disease onset. Bacteria isolated in blood culture were identical to the dominant bacteria by NGS in 8 of 12 patients. Bacterial reads per million reads of the sequence depth (BR) > 200 and relative importance values of the dominant bacteria (P1) > 0.5 were employed to determine causative pathogens. Causative pathogens were detected using these criteria in 7 of 12 patients with BSI. Additionally, causative bacteria were detected in the plasma/serum at 7 days before disease onset in two patients with catheter-related BSI. Causative pathogens, including virus, were identified in three patients with suspected BSI. Lastly, a total of 62 resistance genes were detected by NGS. In conclusion, NGS is a new method to identify causative microorganisms in BSI and may predict BSI in some patients.
Acute encephalitis/encephalopathy is a severe neurological syndrome that is occasionally associated with viral infection. Comprehensive virus detection assays are desirable because viral pathogens have not been identified in many cases. We evaluated the utility of next-generation sequencing (NGS) for detecting viruses in clinical samples of encephalitis/encephalopathy patients. We first determined the sensitivity and quantitative performance of NGS by comparing the NGS-determined number of sequences of human herpesvirus-6 (HHV-6) in clinical serum samples with the HHV-6 load measured using real-time PCR. HHV-6 was measured as it occasionally causes neurologic disorders in children. The sensitivity of NGS for detection of HHV-6 sequences was equivalent to that of real-time PCR, and the number of HHV-6 reads was significantly correlated with HHV-6 load. Next, we investigated the ability of NGS to detect viral sequences in 18 pediatric patients with acute encephalitis/encephalopathy of unknown etiology. A large number of Coxsackievirus A9 and mumps viral sequences were detected in the cerebrospinal fluid of 2 and 1 patients, respectively. In addition, Torque teno virus and Pepper mild mottle viral sequences were detected in the sera of one patient each. These data indicate that NGS is useful for detection of causative viruses in patients with pediatric encephalitis/encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.