In order to explore the influence of rotating speed on the internal flow and sealing characteristics of the liquid-sealing impeller for a liquid oxygen turbopump of a rocket engine, unsteady numerical simulations of the flow characteristics and sealing performance of the first-stage liquid-sealing impeller for a liquid oxygen turbopump under liquid phase conditions were performed. The results show that the pressurization value increases with the increase in the rotating speed. The first-stage liquid-sealing impeller, whose structure is symmetrically distributed along the center of the rotation axis, tends to be an isobaric seal at a rotating speed of 12,000 rpm, and when the rotating speed is decreased or increased, it enters the leakage state or negative pressure sealing state, respectively. The matching relationship between the rotating speed and inlet pressure has a significant effect on the pressurization value, pressurization coefficient and leakage flow rate. Under the working condition with a good match between the rotating speed and inlet pressure, the pressurization value increases significantly and the leakage flow rate decreases significantly, and the pressurization coefficient is stable between 0.88 and 0.89. The empirical formulas proposed by Wood and the Shanghai Research Institute of Chemical Industry (1979) have high reference values for the design of the liquid-sealing impeller with a flow channel (groove) and retainer.
This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.