One of the most promising suggested applications of quantum computing is solving classically intractable chemistry problems. This may help to answer unresolved questions about phenomena like: high temperature superconductivity, solid-state physics, transition metal catalysis, or certain biochemical reactions. In turn, this increased understanding may help us to refine, and perhaps even one day design, new compounds of scientific and industrial importance. However, building a sufficiently large quantum computer will be a difficult scientific challenge. As a result, developments that enable these problems to be tackled with fewer quantum resources should be considered very important. Driven by this potential utility, quantum computational chemistry is rapidly emerging as an interdisciplinary field requiring knowledge of both quantum computing and computational chemistry. This review provides a comprehensive introduction to both computational chemistry and quantum computing, bridging the current knowledge gap. We review the major developments in this area, with a particular focus on near-term quantum computation. Illustrations of key methods are provided, explicitly demonstrating how to map chemical problems onto a quantum computer, and solve them. We conclude with an outlook for this nascent field.
It is vital to minimize the impact of errors for near-future quantum devices that will lack the resources for full fault tolerance. Two quantum error mitigation (QEM) (2017)]. To enable practical implementation of these ideas, here we account for the inevitable imperfections in the experimentalist's knowledge of the error model itself. We describe a protocol for systematically measuring the effect of errors so as to design efficient QEM circuits. We find that the effect of localized Markovian errors can be fully eliminated by inserting or replacing some gates with certain single-qubit Clifford gates and measurements. Finally, having introduced an exponential variant of the extrapolation method we contrast the QEM techniques using exact numerical simulation of up to 19 qubits in the context of a "SWAP" test circuit. Our optimized methods dramatically reduce the circuit's output error without increasing the qubit count.
Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground state energy of many-particle systems; specifically molecular Hydrogen and Lithium Hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation, and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlan's variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.