We describe the isolation and sequencing of Middle East respiratory syndrome coronavirus (MERS-CoV) obtained from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels that had rhinorrhea. Nasal swabs collected from the patient and from one of his nine camels were positive for MERS-CoV RNA. In addition, MERS-CoV was isolated from the patient and the camel. The full genome sequences of the two isolates were identical. Serologic data indicated that MERS-CoV was circulating in the camels but not in the patient before the human infection occurred. These data suggest that this fatal case of human MERS-CoV infection was transmitted through close contact with an infected camel.
BackgroundDengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia.FindingsHere, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004–2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region.ConclusionsThese data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel betacoronavirus that has been circulating in the Arabian Peninsula since 2012 and causing severe respiratory infections in humans. While bats were suggested to be involved in human MERS-CoV infections, a direct link between bats and MERS-CoV is uncertain. On the other hand, serological and virological data suggest dromedary camels as the potential animal reservoirs of MERS-CoV. Recently, we isolated MERS-CoV from a camel and its infected owner and provided evidence for the direct transmission of MERS-CoV from the infected camel to the patient. Here, we extend this work and show that identical MERS-CoV RNA fragments were detected in an air sample collected from the same barn that sheltered the infected camel in our previous study. These data indicate that the virus was circulating in this farm concurrently with its detection in the camel and in the patient, which warrants further investigations for the possible airborne transmission of MERS-CoV.
Background: Enterococcus faecalis is a ubiquitous member of the gut microbiota and has emerged as a lifethreatening multidrug-resistant (MDR) nosocomial pathogen. The aim of this study was to survey the prevalence of multidrug-resistant and epidemiologically important strains of E. faecalis in the western region of Saudi Arabia using phenotypic and whole genome sequencing approaches. Methods: In total, 155 patients positive for E. faecalis infection were included in this study. The isolates were identified by MALDI-TOF, and screen for antimicrobial resistance using VITEK-2 system. Genome sequencing was performed with paired-end strategy using MiSeq platform. Results: Seventeen sequence types (STs) were identified through multilocus sequence typing (MLST) analysis of the E. faecalis genomes, including two novels STs (ST862 and ST863). The most common STs in the Saudi patients were ST179 and ST16 from clonal complex 16 (CC16). Around 96% (n = 149) isolates were MDR. The antibiotics quinupristin/dalfopristin, clindamycin, and erythromycin demonstrated almost no coverage, and high-level streptomycin, gentamycin, and ciprofloxacin demonstrated suboptimal coverage. Low resistance was observed against vancomycin, linezolid, and ampicillin. Moreover, 34 antimicrobial resistance genes and variants, and three families of insertion sequences were found in the E. faecalis genomes, which likely contributed to the observed antimicrobial resistance. Twenty-two virulence factors, which were mainly associated with biofilm formation, endocarditis, cell adherence, and colonization, were detected in the isolates. Conclusions: Diverse STs of E. faecalis, including strains associated with common nosocomial infections are circulating in the healthcare facility of Saudi Arabia and carried multi-drug resistance, which has important implications for infection control.
The gut microbiota is often affected by the dietary and lifestyle habits of the host, resulting in a better efficacy that favors energy harvesting from the consumed food. Our objective was to characterize the composition of gut microbiota in adult Saudis and investigate possible association with lifestyle and dietary practices. Feces from 104 Saudi volunteers (48% males) were tested for microbiota by sequencing the V3-V4 region of bacterial 16S ribosomal RNA (rRNA). For all participants, data were collected related to their lifestyle habits and dietary practices. The relative abundance (RA) of Fusobacteria was significantly higher in normal weight Saudis (P = 0.005, false discovery rate-FDR = 0.014). Individuals who consumed more coffee presented marginally significant more RA of Fusobacteria (P = 0.02, FDR = 0.20) in their gut microbiota compared to those reporting low or no coffee intake, but the RA of Fusobacteria was significantly higher in smokers compared to nonsmokers (P = 0.009, FDR = 0.027). The RA of Fusobacteria was also significantly higher in those reporting daily consumption of bread (P = 0.005, FDR = 0.015). At the species level, the gut microbiota of people who consumed coffee was dominated by Bacteroides thetaiotaomicron followed by Phascolarctobacterium faecium and Eubacterium rectale. Similarly, the gut microbiota of smokers was also enriched by B. thetaiotaomicron and Lactobacillus amylovorus. Smoking cessation, bread and coffee consumption induce changes in the intestinal microbial composition of Saudis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.