The internal Zappa-Szép products emerge when a semigroup has the property that every element has a unique decomposition as a product of elements from two given subsemigroups. The external version constructed from actions of two semigroups on one another satisfying axiom derived by G. Zappa. We illustrate the correspondence between the two versions internal and the external of Zappa-Szép products of semigroups. We consider the structure of the internal Zappa-Szép product as an enlargement. We show how rectangular band can be described as the Zappa-Szép product of a left-zero semigroup and a right-zero semigroup. We find necessary and sufficient conditions for the Zappa-Szép product of regular semigroups to again be regular, and necessary conditions for the Zappa-Szép product of inverse semigroups to again be inverse. We generalize the Billhardt λ-semidirect product to the Zappa-Szép product of a semilattice E and a group G by constructing an inductive groupoid.
By the distance or degree of vertices of the molecular graph, we can define graph invariant called topological indices. Which are used in chemical graph to describe the structures and predicting some physicochemical properties of chemical compound? In this paper, by introducing two new topological indices under the name first and second Zagreb locating indices of a graph G, we establish the exact values of those indices for some standard families of graphs included the firefly graph.
For arbitrary monoids A and B, in Cevik et al. (Hacet J Math Stat 2019:1–11, 2019), it has been recently defined an extended version of the general product under the name of a higher version of Zappa products for monoids (or generalized general product) $$A^{\oplus B}$$
A
⊕
B
$$_{\delta }\bowtie _{\psi }B^{\oplus A}$$
δ
⋈
ψ
B
⊕
A
and has been introduced an implicit presentation as well as some theories in terms of finite and infinite cases for this product. The goals of this paper are to present some algebraic structures such as regularity, inverse property, Green’s relations over this new generalization, and to investigate some other properties and the product obtained by a left restriction semigroup and a semilattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.