This paper presents a novel approach for learning instance segmentation with image-level class labels as supervision. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. For generating the pseudo labels, we first identify confident seed areas of object classes from attention maps of an image classification model, and propagate them to discover the entire instance areas with accurate boundaries. To this end, we propose IRNet, which estimates rough areas of individual instances and detects boundaries between different object classes. It thus enables to assign instance labels to the seeds and to propagate them within the boundaries so that the entire areas of instances can be estimated accurately. Furthermore, IRNet is trained with interpixel relations on the attention maps, thus no extra supervision is required. Our method with IRNet achieves an outstanding performance on the PASCAL VOC 2012 dataset, surpassing not only previous state-of-the-art trained with the same level of supervision, but also some of previous models relying on stronger supervision.
This paper addresses unsupervised discovery and localization of dominant objects from a noisy image collection with multiple object classes. The setting of this problem is fully unsupervised, without even image-level annotations or any assumption of a single dominant class. This is far more general than typical colocalization, cosegmentation, or weakly-supervised localization tasks. We tackle the discovery and localization problem using a part-based region matching approach: We use off-the-shelf region proposals to form a set of candidate bounding boxes for objects and object parts. These regions are efficiently matched across images using a probabilistic Hough transform that evaluates the confidence for each candidate correspondence considering both appearance and spatial consistency. Dominant objects are discovered and localized by comparing the scores of candidate regions and selecting those that stand out over other regions containing them. Extensive experimental evaluations on standard benchmarks demonstrate that the proposed approach significantly outperforms the current state of the art in colocalization, and achieves robust object discovery in challenging mixed-class datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.