The applications of hybrid natural/synthetic reinforced polymer composites have been rapidly gaining market share in structural applications due to their remarkable characteristics and the fact that most of the components made of these materials are subjected to cyclic loading. Their fatigue properties have received a lot of attention because predicting their behavior is a challenge due to the effects of the synergies between the fibers. The purpose of this work is to characterize the tension, compression, and tensile-compression fatigue behavior of six layers of Kevlar hybridized with one layer of woven kenaf reinforced epoxy, at a 35% weight fraction. Fatigue tests were carried out and loaded cyclically at 60%, 70%, 80%, and 90% of their ultimate compressive stress. The results give a complete description for tensile and compression properties and could be used to predict fatigue-induced failure mechanisms.
Nowadays, due to renewable issues, environmental concerns, and the financial problems of synthetic fibres, the development of high-performance engineering products made from natural resources is increasing all over the world. Lately, kenaf fibre has been used among many different types of natural resources in various shapes. Unidirectional long fibres or randomly oriented short fibre shapes are the most common type of kenaf fibres that have been investigated in previous works. This work characterises and evaluates the physical, mechanical, and morphological properties of plain woven kenaf fabric and its composites with three types of thermoset resin at 0°/90° and 45°/−45° orientation, in order to assess their suitability as lignocellulosic reinforced polymer composites. A vacuum infusion manufacturing technique was used to prepare the specimens with fibre weight content of 35% ± 2%. Eight specimens were prepared for each test, and five replications were adopted. A total of 78 samples were tested in this study. The results show that the composites with 0°/90° had the highest tensile, flexural strengths, and modulus. The morphological properties of composite samples were analysed through scanning electron microscopy (SEM) images and these clearly demonstrated the better interfacial adhesion between the woven kenaf and the epoxy matrix.
This work addresses the results of experimental investigation carried out on mechanical and morphological properties of plain woven kenaf fiber reinforced PVB film which was prepared by hot press technique. The composites were prepared with various fiber contents: 0%, 10%, 20%, 30%, 40%, 50%, and 60% (by weight), with the processing parameters 165°C, 20 min, and at a pressure of 8 MPa applied on the material. Tensile, flexural, and Charpy impact properties were studied as well as morphological properties of impact fracture surface. With the increase in kenaf fibers content up to 40%, the PVB composites have shown lower tensile and flexural strength accompanied with reduction in the ultimate strain of the composite. The results showed that impact properties were affected in markedly different ways by using various kenaf contents and decrease with the increase in kenaf fiber content up to 40%; however, high impact strength was observed even with 40% kenaf fiber content. Furthermore, scanning electron microscopy for impact samples was utilised to demonstrate the different failures in the fracture surfaces for various kenaf fibers contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.