Problem statement:In machining operation, the quality of surface finish is an important requirement for many turned workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. Approach: The focus of present experimental study is to optimize the cutting parameters using two performance measures, workpiece surface temperature and surface roughness. Optimal cutting parameters for each performance measure were obtained employing Taguchi techniques. The orthogonal array, signal to noise ratio and analysis of variance were employed to study the performance characteristics in turning operation. Results: The experimental results showed that the workpiece surface temperature can be sensed and used effectively as an indicator to control the cutting performance and improves the optimization process. Conclusion: Thus, it is possible to increase machine utilization and decrease production cost in an automated manufacturing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.