An efficient microwave milk pasteurization system requires a rigorous temperature dependent dielectric model of the milk, since the performance of milk pasteurization strongly depends on its dielectric properties. This paper describes the dielectric modelling of cow's raw milk during batch (Vat) pasteurization which covers the frequencies from 0.2 GHz to 6GHz. An open-ended coaxial sensor is used for the measurements of dielectric constant, loss factor, and ionic conductivity at temperature range of 25 • C to 75 • C with an interval of 5 • C. Combinations of Cole-Davison and Debye equations are modified to fit the dielectric measurements. It was found that the measured dielectric constant decreased as the frequency increased, while the high temperature processed produce lower in a convergence manner toward 6 GHz. The loss factor exhibited high losses at higher temperature and lower frequencies, as well as converged at 1.9 GHz then diverged up to 6 GHz. Three relaxation processes are dominated at all temperature treatments within the frequency range. The relaxation time, τ , and the activation energy, Q, are modelled based on linear fitting of measured data according to Debye and Arrhenius approaches.
Despite several attempts to enhance the electrical and charge carrier transport characteristics of porous silicon (PSi), the requisite conditions for optimally synthesizing n-PSi with appealing optoelectronic properties are yet to be achieved. Therefore, this research explores the effect of the chemical ratio of precursor materials (HF:C2H6O:H2O2) on the surface morphology, crystalline structure, and optical and electric properties of PSi. The PSi was produced by photoelectrochemical etching followed by anodization of the n-type Si under light illumination. The properties of the as-prepared PSi were studied by means of microscopic and spectroscopic techniques. The HF:C2H6O:H2O2 chemical ratio was optimized at 2 : 1 : 1. A metal–semiconductor–metal (MSM) ultraviolet photodetector (Pt/n-PSi/Pt) was fabricated, which exhibited high performances under UV light (365 nm) illumination. The photodetector was shown to be highly stable and reliable with a rapid rise time of 0.56 s at a bias voltage of +5 V. The MSM photodetector displayed responsivity (Rp) of 9.17 A/m at 365 nm, which significantly exceeds the values reported for TiC/porous Si/Si in some contemporary research. The photodetector fabricated from n-PSi, synthesized at an optimum chemical ratio (2 : 1 : 1) exhibited the best photodetection performance, possibly due to the high porosity and defect-free state of the n-PSi thin films.
Mono-mode microwave reactors are usually used to heat substances, especially food. This is because heating using a microwave reactor can sustain the flavor, color, and nutrition of the food. Furthermore, this heating technique is cost-effective and time-saving compared to a conventional heating method. The mono-mode reactor is able to determine the absorption of microwave power accurately on the heated substance versus a multimode reactor. In this chapter, a simple and precise mono-mode microwave reactor is designed and developed especially for research laboratories. The advantage of this reactor is to provide a more accurate calibration process, in order to improve the optimum energy use in the heating process, as well as the temperature of the specimen. The reactor can generate output power from 30 watts to 1500 watts, operating at 2.45±0.03 GHz and capable of accommodating a specimen volume of 780 cm3. Pure water is used as a heated specimen to demonstrate the performance and efficiency of this reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.