dMycobacterium tuberculosis expresses the 28-kDa protein HupB (Rv2986c) and the Fe 3؉ -specific high-affinity siderophores mycobactin and carboxymycobactin upon iron limitation. The objective of this study was to understand the functional role of HupB in iron acquisition. A hupB mutant strain of M. tuberculosis, subjected to growth in low-iron medium (0.02 g Fe ml ؊1 ), showed a marked reduction of both siderophores with low transcript levels of the mbt genes encoding the MB biosynthetic machinery. Complementation of the mutant strain with hupB restored siderophore production to levels comparable to that of the wild type. We demonstrated the binding of HupB to the mbtB promoter by both electrophoretic mobility shift assays and DNA footprinting. The latter revealed the HupB binding site to be a 10-bp AT-rich region. While negative regulation of the mbt machinery by IdeR is known, this is the first report of positive regulation of the mbt operon by HupB. Interestingly, the mutant strain failed to survive inside macrophages, suggesting that HupB plays an important role in vivo.
Fatty acid metabolism plays an important role in the survival and pathogenesis of Mycobacterium tuberculosis. Lipids are assumed to be the major source of energy during dormancy. Here, we report the characterization of a starvation-inducible, lipid-responsive transcriptional regulator, Rv0494, divergently transcribed from the Rv0493c probable operon. The striking difference in the transcriptional regulatory apparatus between mycobacteria and other well-studied organisms, such as Escherichia coli, is the organization of mycobacterial promoters. Mycobacterial promoters have diverse architectures and most of these promoters function inefficiently in E. coli. In this study, we characterized the promoter elements of Rv0494 along with the sigma factors required for transcription initiation. Rv0494 promoter activity increased under nutrient starvation conditions and was transcribed via two promoters: the promoter proximal to the translational start site was active under standard growth conditions, whilst both promoters contributed to the increased activity seen during starvation, with the major contribution from the distal promoter. Furthermore, Rv0494 translation initiated at a codon located 9 bp downstream of the annotated start codon. Rv0494 bound to its upstream sequence to auto-regulate its own expression; this binding was responsive to long-chain fatty acyl-CoA molecules. We further report Rv0494-mediated transcriptional regulation of the Rv2326c gene -a probable transmembrane ATP-binding transporter encoding gene.
Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadR and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadR. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.