In recent years, social media sites have provided a large amount of information. Recipients of such information need mechanisms to know more about the received information, including the provenance. Previous research has shown that some attributes related to the received information provide additional context, so that a recipient can assess the amount of value, trust, and validity to be placed in the received information. Personal attributes of a user, including name, location, education, ethnicity, gender, and political and religious affiliations, can be found in social media sites. In this paper, we present a novel web-based tool for collecting the attributes of interest associated with a particular social media user related to the received information. This tool provides a way to combine different attributes available at different social media sites into a single user profile. Using different types of Twitter users, we also evaluate the performance of the tool in terms of number of attribute values collected, validity of these values, and total amount of retrieval time.
Social media provides a platform for seeking information from a large user base. Information seeking in social media, however, occurs simultaneously with users expressing their viewpoints by making statements. Rhetorical questions have the form of a question but serve the function of a statement and are an important tool employed by users to express their viewpoints. Therefore, rhetorical questions might mislead platforms assisting information seeking in social media. It becomes difficult to identify rhetorical questions as they are not syntactically different from other questions. In this article, we develop a framework to identify rhetorical questions by modeling some motivations of the users to post them. We focus on two motivations of the users drawing from linguistic theories to implicitly convey a message and to modify the strength of a statement previously made. We develop a quantitative framework from these motivations to identify rhetorical questions in social media. We evaluate the framework using two datasets of questions posted on a social media platform Twitter and demonstrate its effectiveness in identifying rhetorical questions. This is the first framework, to the best of our knowledge, to model the possible motivations for posting rhetorical questions to identify them on social media platforms.
Predicting signed links in social networks often faces the problem of signed link data sparsity, i.e., only a small percentage of signed links are given. The problem is exacerbated when the number of negative links is much smaller than that of positive links. Boosting signed link prediction necessitates additional information to compensate for data sparsity. According to psychology theories, one rich source of such information is user's personality such as optimism and pessimism that can help determine her propensity in establishing positive and negative links. In this study, we investigate how personality information can be obtained, and if personality information can help alleviate the data sparsity problem for signed link prediction. We propose a novel signed link prediction model that enables empirical exploration of user personality via social media data. We evaluate our proposed model on two datasets of real-world signed link networks. The results demonstrate the complementary role of personality information in the signed link prediction problem. Experimental results also indicate the effectiveness of different levels of personality information for signed link data sparsity problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.