Recent studies have shown that general-base assisted catalysis is a viable mechanistic pathway for hydrolysis of smaller anhydrides. Therefore, it is the central purpose of the present work to compare and contrast the number of hydrogen atoms in-flight and stationary in the transition state structure of the base-catalyzed mechanisms of 2 hydrolytic reactions as well as determine if any solvent effects occur on the mechanisms. The present research focuses on the hydrolytic mechanisms of N,Ndimethylformamide (DMF) and acetic anhydride in alkali media of varying deuterium oxide mole fractions. Acetic anhydride has been included in this study to enable comparisons with DMF hydrolysis. Comparative studies may give synergistic insight into the detailed structural features of the activated complexes for both systems. Hydrolysis reactions in varying deuterium oxide mole fractions were conducted in concentrations of 2.0M , 2.5M , and 3.0M for DMF and 0.10M for acetic anhydride at 25°C. Studies in varying deuterium mole fractions allow for proton inventory analysis, which sheds light on the number and types of hydrogen atoms involved in the activated complex. For these systems, this type of study can distinguish between direct nucleophilic attack of the hydroxide ion on the carbonyl center and general-base catalysis by the hydroxide ion to facilitate a water molecule attacking the carbonyl center. The numerical data are used to discuss 3 possible mechanisms in the hydrolysis of DMF. KEYWORDSGross-Butler plot, hydroxide-catalyzed acetic anhydride hydrolysis, hydroxide-catalyzed N,Ndimethylformamide hydrolysis, inverse isotope effect, proton inventory studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.