The early detection of Breast Cancer, the deadly disease that mostly affects women is extremely complex because it requires various features of the cell type. Therefore, the efficient approach to diagnosing Breast Cancer at the early stage was to apply artificial intelligence where machines are simulated with intelligence and programmed to think and act like a human. This allows machines to passively learn and find a pattern, which can be used later to detect any new changes that may occur. In general, machine learning is quite useful particularly in the medical field, which depends on complex genomic measurements such as microarray technique and would increase the accuracy and precision of results. With this technology, doctors can easily diagnose patients with cancer quickly and apply the proper treatment in a timely manner. Therefore, the goal of this paper is to address and propose a robust Breast Cancer diagnostic system using complex genomic analysis via microarray technology. The system will combine two machine learning methods, K-means cluster, and linear regression.
The early detection of Breast Cancer, the deadly disease that mostly affects women is extremely complex because it requires various features of the cell type. Therefore, the efficient approach to diagnosing Breast Cancer at the early stage was to apply artificial intelligence where machines are simulated with intelligence and programmed to think and act like a human. This allows machines to passively learn and find a pattern, which can be used later to detect any new changes that may occur. In general, machine learning is quite useful particularly in the medical field, which depends on complex genomic measurements such as microarray technique and would increase the accuracy and precision of results. With this technology, doctors can easily diagnose patients with cancer quickly and apply the proper treatment in a timely manner. Therefore, the goal of this paper is to address and propose a robust Breast Cancer diagnostic system using complex genomic analysis via microarray technology. The system will combine two machine learning methods, K-means cluster, and linear regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.