A new class of non-equiatomic FeNiCoAlTaB (NCATB) high entropy alloy (HEA) is introduced, which exhibits tunable properties from cryogenic/ambient superelasticity to ultra-high strength through controlling the nature or type of martensite. In the current NCATB-HEA alloy system, depending on the size of γ'-Ni 3 Al (L1 2 ) precipitates, thin-plate, lenticular, butterfly, and lath-like martensite can form. When thin-plate thermoelastic martensite is favored, a superelastic strain of about 0.025 (ambient) and %0.01 (cryogenic) is achieved with a high yield stress of %800 MPa and a high-damping effect (10 times higher than Cu-Al-Ni superelastic alloy). While for butterfly and lath-like martensite dominated NCATB-HEA, an ultra-high yield stress of around 1.1 GPa is achieved while no superelasticity is demonstrated. This current alloy system helps to expand the application domain of HEAs, for example, into high-damping applications, robust actuators, space exploration, and other structural material applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.