In this paper, we present the performance and security analysis for various commutative SIDH (CSIDH)-based algorithms. As CSIDH offers a smaller key size than SIDH and provides a relatively efficient signature scheme, numerous CSIDH-based key exchange algorithms have been proposed to optimize the CSIDH. In CSIDH, the private key is an ideal class in a class group, which can be represented by an integer vector. As the number of ideal classes represented by these vectors determines the security level of CSIDH, it is important to analyze whether the different vectors induce the same public key. In this regard, we generalize the existence of a collision for a base prime p≡7mod8. Based on our result, we present a new interval for the private key to have a similar security level for the various CSIDH-based algorithms for a fair comparison of the performance. Deduced from the implementation result, we conclude that for a prime p≡7mod8, CSIDH on the surface using the Montgomery curves is the most likely to be efficient. For a prime p≡3mod8, CSIDH on the floor using the hybrid method with Onuki’s collision-free method is the most likely to be efficient and secure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.