Quantitative analysis of the dynamic cellular mechanisms shaping the wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
SignificanceThe coeveolution of flowers and pollinators is well known, but how generalist pollinators identify suitable flowers across environments and flower species is not well understood. Hoverflies, which are found across the globe, are one of the most important alternative pollinators after bees and bumblebees. Here we measured, predicted, and finally recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical). We found that although “flower signatures” were unique for each environment, some cues were ubiquitously attractive, despite not resembling cue combinations from real flowers. Our results provide unique insights into how a cosmopolitan pollinator identifies flower objects across environments, which has important implications for our understanding of pollination as a global ecological service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.