We examine quantum anomalous Hall (QAH) insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields. The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics. Here, we generalize Haldane’s model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping. Instead, we introduce an intraorbital coupling, stemming directly from the local spin-orbit coupling (SOC). Our dxy
/d
x
2–y
2
model may be viewed as a generalization of the bismuthene px
/py
-model for correlated d-orbitals. It promises a large SOC gap, featuring a high operating temperature. This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides. Furthermore, we find that electronic correlations can drive the QAH states to a c = 0 phase, in which every band carries a nonzero Chern number. Our work not only provides a realistic QAH model, but also generalizes the nontrivial band topology to correlated orbitals, which demonstrates an exciting topological phase transition driven by Coulomb repulsions. Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology.
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a few known dual-topological insulators that may host different surface states protected by symmetries. In this work, we systematically investigate both structure and electronic evolution of bulk Pt2HgSe3 under high pressure up to 96 GPa. The nontrivial topology is theoretically stable, and persists up to the structural phase transition observed in the high-pressure regime. Interestingly, we found that this phase transition is accompanied by the appearance of superconductivity at around 55 GPa and the critical transition temperature Tc increases with applied pressure. Our results demonstrate that Pt2HgSe3 with nontrivial topology of electronic states displays a ground state upon compression and raises potentials in application to the next-generation spintronic devices.
In this study, an efficacious method for solving viscoelastic dynamic plates in the time domain is proposed for the first time. The differential operator matrices of different orders of Bernstein polynomials algorithm are adopted to approximate the ternary displacement function. The approximate results are simulated by code. In addition, it is proved that the proposed method is feasible and effective through error analysis and mathematical examples. Finally, the effects of external load, side length of plate, thickness of plate and boundary condition on the dynamic response of square plate are studied. The numerical results illustrate that displacement and stress of the plate change with the change of various parameters. It is further verified that the Bernstein polynomials algorithm can be used as a powerful tool for numerical solution and dynamic analysis of viscoelastic plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.