of the 2D structures has approached its limit (< 90%) due to which the energy loss via reflection (2-5%) and thermal radiation heat loss (8-12%) occurs in all the 2D structures.One of the effective strategies for further improving the vapor-generation efficiency is to decrease the surface temperature of the absorber by increasing the surface area within a given projection area. [22] Some unprecedented vapor-generation rates have been reported in various 3D generators, which are all beyond the input solar energy limit. [23][24][25] Here, we have found that bamboos, as a natural hierarchical cellular material, can be excellent 3D solar vapor-generation devices due to their unique structural features. By a simple carbonization progress, the bamboos maintain remarkable mechanical property. Meanwhile, the carbonized bamboo-based evaporator possesses the following advantages: 1) natural hydrophilicity; 2) numerous aligned microchannels acting as highways for rapid water transport; 3) high light absorptance in a broad spectral range; 4) reduced thermal radiation heat loss; 5) lower average temperature than environment; 6) reduced vaporization enthalpy of water confined in the bamboo mesh; 7) remarkable mechanical properties; 8) ability of salt self-cleaning; 9) good scalability and low cost. As a result, a floating carbonized bamboo sample can evaporate water with an extremely high vapor-generation rate of 3.13 kg m −2 h −1 under 1 sun illumination. It also shows superior reusability and stability for solar vapor generation, without any performance degradation after cycling 360 h. The carbonized bamboo shows favorable overall performance compared with other reported solar vapor generators and has attractive applications in desalination as well asindustrial and domestic wastewater abatement. All of these features are elucidated below in detail.Bamboo is the fastest-growing and highest-yielding hierarchical cellular material on the Earth. A typical bamboo reaches maturity within months and ultimate mechanical properties within few years, making it one of the most renewable resources. [26] Figure 1a-c shows the illustration of the design concept for a bamboo-based solar vapor-generation device. Bamboo tubes with desired height were cut from the natural bamboo and were carbonized to make it dark. The carbonized Given the global challenges of water scarcity, solar-driven vapor generation has become a renewed topic as an energy-efficient way for clean water production. Here, it is revealed that bamboo, as a natural hierarchical cellular material, can be an excellent 3D solar vapor-generation device by a simple carbonization progress. A floating carbonized bamboo sample evaporates water with an extremely high vapor-generation rate of 3.13 kg m −2 h −1 under 1 sun illumination. The high evaporation rate is achieved by the unique natural structure of bamboos. The inner wall of bamboo recovers the diffuse light energy and the thermal radiation heat loss from the 3D bamboo bottom, and the outer wall captures energy from the warmer...
Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.