Introduction The intricate microcircuitry of the cerebral cortex is thought to be a critical substrate from which arise the impressive capabilities of the mammalian brain. Until now, our knowledge of the stereotypical connectivity in neocortical microcircuits has been pieced together from individual studies of the connectivity between small numbers of neuronal cell types. Here, we provide unbiased, large-scale profiling of neuronal cell types and connections to reveal the essential building blocks of the cortex and the principles governing their assembly into cortical circuits. Using advanced techniques for tissue slicing, multiple simultaneous whole-cell recording, and morphological reconstruction, we are able to provide a comprehensive view of the connectivity between diverse types of neurons, particularly among types of γ-aminobutyric acid–releasing (GABAergic) interneurons, in the adult animal. Rationale We took advantage of a method for preparing high-quality slices of adult tissue and combined this technique with octuple simultaneous, whole-cell recordings followed by an improved staining method that allowed detailed recovery of axonal and dendritic arbor morphology. These data allowed us to perform a census of morphologically and electrophysiologically defined neuronal types (primarily GABAergic interneurons) in neocortical layers 1, 2/3, and 5 (L1, L23, and L5, respectively) and to observe their connectivity patterns in adult animals. Results Our large-scale, comprehensive profiling of neocortical neurons differentiated 15 major types of interneurons, in addition to two lamina-defined types of pyramidal neurons (L23 and L5). Cortical interneurons comprise two types in L1 (eNGC and SBC-like), seven in L23 (L23MC, L23NGC, BTC, BPC, DBC, L23BC, and ChC), and six in L5 (L5MC, L5NGC, L5BC, SC, HEC, and DC) (see the figure). Each type has stereotypical electrophysiological properties and morphological features and can be differentiated from all others by cell type-specific axonal geometry and axonal projection patterns. Importantly, each type of neuron has its own characteristic input-output connectivity profile, connecting with other constituent neuronal types with varying degrees of specificity in postsynaptic targets, laminar location, and synaptic characteristics. Despite specific connection patterns for each cell type, we found that a small number of simple connectivity motifs are repeated across layers and cell types defining a canonical cortical microcircuit. Conclusion Our comprehensive profiling of neuronal cell types and connections in adult neocortex provides the most complete wiring diagram of neocortical microcircuits to date. Compared with current genetic labels for cell class, which paint the cortex in broad strokes, our analysis of morphological and electrophysiological properties revealed new cell classes and allowed us to derive a small number of simple connectivity rules that were repeated across layers and cell types. This detailed blueprint of cortical wiring should aid efforts to i...
Distant supervised relation extraction has been widely used to find novel relational facts from text. However, distant supervision inevitably accompanies with the wrong labelling problem, and these noisy data will substantially hurt the performance of relation extraction. To alleviate this issue, we propose a sentence-level attention-based model for relation extraction. In this model, we employ convolutional neural networks to embed the semantics of sentences. Afterwards, we build sentence-level attention over multiple instances, which is expected to dynamically reduce the weights of those noisy instances. Experimental results on real-world datasets show that, our model can make full use of all informative sentences and effectively reduce the influence of wrong labelled instances. Our model achieves significant and consistent improvements on relation extraction as compared with baselines. The source code of this paper can be obtained from https: //github.com/thunlp/NRE.
Despite the importance of the mammalian neocortex for complex cognitive processes, we still lack a comprehensive description of its cellular components. To improve the classification of neuronal cell types and the functional characterization of single neurons, we present Patch-seq, a method that combines whole-cell electrophysiological patch-clamp recordings, single-cell RNA-sequencing and morphological characterization. Following electrophysiological characterization, cell contents are aspirated through the patch-clamp pipette and prepared for RNA-sequencing. Using this approach, we generate electrophysiological and molecular profiles of 58 neocortical cells and show that gene expression patterns can be used to infer the morphological and physiological properties such as axonal arborization and action potential amplitude of individual neurons. Our results shed light on the molecular underpinnings of neuronal diversity and suggest that Patch-seq can facilitate the classification of cell types in the nervous system.
We propose minimum risk training for end-to-end neural machine translation. Unlike conventional maximum likelihood estimation, minimum risk training is capable of optimizing model parameters directly with respect to arbitrary evaluation metrics, which are not necessarily differentiable. Experiments show that our approach achieves significant improvements over maximum likelihood estimation on a state-of-the-art neural machine translation system across various languages pairs. Transparent to architectures, our approach can be applied to more neural networks and potentially benefit more NLP tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.