Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess zeros due to the existence of unobserved heterogeneous subgroups. The suggested procedure utilizes the factor mixture modeling (FMM) with MIMIC (multiple-indicator multiple-cause) to address the compromised DIF detection power via the estimation of latent classes. A Monte Carlo simulation was conducted to evaluate the suggested procedure in comparison to the well-known likelihood ratio (LR) DIF test. Our simulation study results indicated the superiority of FMM over the LR DIF test in terms of detection power and illustrated the importance of accounting for latent heterogeneity in zero-inflated data. The empirical data analysis results further supported the use of FMM by flagging additional DIF items over and above the LR test.
Increasing use of innovative items in operational assessments has shedded new light on the polytomous testlet models. In this study, we examine performance of several scoring models when polytomous items exhibit random testlet effects. Four models are considered for investigation: the partial credit model (PCM), testlet-as-a-polytomousitem model (TPIM), random-effect testlet model (RTM), and fixed-effect testlet model (FTM). The performance of the models was evaluated in two adaptive testings where testlets have nonzero random effects. The outcomes of the study suggest that, despite the manifest random testlet effects, PCM, FTM, and RTM perform comparably in trait recovery and examinee classification. The overall accuracy of PCM and FTM in trait inference was comparable to that of RTM. TPIM consistently underestimated population variance and led to significant overestimation of measurement precision, showing limited utility for operational use. The results of the study provide practical implications for using the polytomous testlet scoring models.
The surge of online testing in recent years calls for procedures that monitor examinees’ test-taking behaviors in real time. This study presents online proctoring methods that examine response and response-time behaviors during testing. The procedures are developed using sequential quality control techniques and implemented with various sampling designs to improve time sensitivity. Experimentation with simulated data suggests that the proposed methods can provide a powerful online surveillance tool for regulating anomalous behaviors. The procedures showed high sensitivity to aberrances and gave timely signals while maintaining the error rates reasonably small. We demonstrate utility of the procedures using real-assessment data and discuss implications for practical use.
The development of technology-enhanced innovative items calls for practical models that can describe polytomous testlet items. In this study, we evaluate four measurement models that can characterize polytomous items administered in testlets: (a) generalized partial credit model (GPCM), (b) testlet-as-a-polytomous-item model (TPIM), (c) random-effect testlet model (RTM), and (d) fixed-effect testlet model (FTM). Using data from GPCM, FTM, and RTM, we examine performance of the scoring models in multiple aspects: relative model fit, absolute item fit, significance of testlet effects, parameter recovery, and classification accuracy. The empirical analysis suggests that relative performance of the models varies substantially depending on the testlet-effect type, effect size, and trait estimator. When testlets had no or fixed effects, GPCM and FTM led to most desirable measurement outcomes. When testlets had random interaction effects, RTM demonstrated best model fit and yet showed substantially different performance in the trait recovery depending on the estimator. In particular, the advantage of RTM as a scoring model was discernable only when there existed strong random effects and the trait levels were estimated with Bayes priors. In other settings, the simpler models (i.e., GPCM, FTM) performed better or comparably. The study also revealed that polytomous scoring of testlet items has limited prospect as a functional scoring method. Based on the outcomes of the empirical evaluation, we provide practical guidelines for choosing a measurement model for polytomous innovative items that are administered in testlets.
The study presents multivariate sequential monitoring procedures for examining test‐taking behaviors online. The procedures monitor examinee's responses and response times and signal aberrancy as soon as significant change is identifieddetected in the test‐taking behavior. The study in particular proposes three schemes to track different indicators of a test‐taking mode—the observable manifest variables, latent trait variables, and measurement likelihood. For each procedure, sequential sampling strategies are presented to implement online monitoring. Numerical experimentation based on simulated data suggests that the proposed procedures demonstrate adequate performance. The procedures identified examinees with aberrant behaviors with high detection power and timeliness, while maintaining error rates reasonably small. Experimental application to real data also suggested that the procedures have practical relevance to real assessments. Based on the observations from the experiential analysis, the study discusses implications and guidelines for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.