The Ca2+ sensor calmodulin (CaM) regulates cardiac ryanodine receptor (RyR2)-mediated Ca2+ release from the sarcoplasmic reticulum. CaM inhibits RyR2 in a Ca2+-dependent manner and aberrant CaM-dependent inhibition results in life-threatening cardiac arrhythmias. However, the molecular details of the CaM–RyR2 interaction remain unclear. Four CaM-binding domains (CaMBD1a, -1b, -2, and -3) in RyR2 have been proposed. Here, we investigated the Ca2+-dependent interactions between CaM and these CaMBDs by monitoring changes in the fluorescence anisotropy of carboxytetramethylrhodamine (TAMRA)-labeled CaMBD peptides during titration with CaM at a wide range of Ca2+ concentrations. We showed that CaM bound to all four CaMBDs with affinities that increased with Ca2+ concentration. CaM bound to CaMBD2 and -3 with high affinities across all Ca2+ concentrations tested, but bound to CaMBD1a and -1b only at Ca2+ concentrations above 0.2 µM. Binding experiments using individual CaM domains revealed that the CaM C-domain preferentially bound to CaMBD2, and the N-domain to CaMBD3. Moreover, the Ca2+ affinity of the CaM C-domain in complex with CaMBD2 or -3 was so high that these complexes are essentially Ca2+ saturated under resting Ca2+ conditions. Conversely, the N-domain senses Ca2+ exactly in the transition from resting to activating Ca2+ when complexed to either CaMBD2 or -3. Altogether, our results support a binding model where the CaM C-domain is anchored to RyR2 CaMBD2 and saturated with Ca2+ during Ca2+ oscillations, while the CaM N-domain functions as a dynamic Ca2+ sensor that can bridge noncontiguous regions of RyR2 or clamp down onto CaMBD2.
Aims In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the deaths, as part of an inquiry into the mother’s convictions. Methods and results Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. Conclusion A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.
Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used β-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.