The present study attempts to explore the effective components, action targets, and potential mechanism of nightshade for colon cancer treatment. The relationship network diagram of ‘traditional Chinese medicine – component – target – disease’ was firstly constructed by employing network pharmacology. Experiments were conducted in vivo and in vitro to verify the influence of quercetin, the core effective component of nightshade, on colon cancer. Meanwhile, the regulatory effects of quercetin on core targets and main signaling pathways were determined. Based on the network diagram of ‘traditional Chinese medicine – component – target – disease’ and KEGG analysis, quercetin might exhibit certain effects on colon cancer treatment by regulating the biological behavior of core targets related to cell apoptosis in tumors including PIK3R1, PIK3CA, Akt1, and Akt2. Furthermore, quercetin has been demonstrated in vitro experiments to suppress the proliferation and migration of colon cancer cells whereas promote their apoptosis in a dose-dependent fashion. In vivo experiments indicate that quercetin had an antitumor effect on human colon cancer SW480 cells in nude mice bearing tumors. Furthermore, PIK3CA could bind to quercetin directly, which is validated by immunocoprecipitation. Therefore, the activation of PI3K/AKT phosphorylation was inhibited by quercetin and moreover the expressions of apoptotic proteins caspase-3 and Bcl2-Associated X protein (BAX) were up-regulated. In conclusion, the potential mechanism of nightshade lies in the activation of the PI3K/AKT signaling pathway inhibited by quercetin, thus promoting apoptosis of colon cancer cells for colon cancer treatment.
Background: Long non-coding RNAs (lncRNAs) have been confirmed as important regulators during osteogenic differentiation. Previous researches have disclosed that growth arrest-specific transcript 5 ( GAS5 ) can promote the osteogenic differentiation of human bone marrow mesenchyml stem cells (hBMSCs), but the underlying regulatory mechanism of GAS5 during the osteogenic differentiation of hBMSCs is unclear. Methods: Osteogenic differentiation was induced in hBMSCs by using osteogenic medium (OM). Gene expression was assessed by RT-qPCR or western blot assays as needed. ALP activity, ALP staining and ARS staining assays were performed to evaluate the impact of GAS5 , microRNA-382-3p (miR-382-3p) and TATA-box binding protein associated factor 1 ( TAF1 ) on osteogenic differentiation in vitro . The interaction among GAS5 , miR-382-3p and TAF1 was determined by RIP, ChIP and luciferase reporter assays. Results: Expression of GAS5 (transcript variant 2) was down-regulated during the osteogenic differentiation of hBMSCs and its overexpression retarded the osteogenic differentiation of hBMSCs. GAS5 inhibited miR-382-3p through targeting RNA-directed microRNA degradation (TDMD). MiR-382-3p down-regulation partially offset the promoted osteogenic differentiation of hBMSCs upon GAS5 silencing. TAF1 negatively modulated osteogenic differentiation and it activated GAS5 transcription so as to form a positive GAS5 /miR-382-3p/ TAF1 feedback loop in hBMSCs. Conclusion: This research was the first to reveal that the GAS5 /miR-382-3p/ TAF1 feedback loop inhibited the osteogenic differentiation of hBMSCs, which provided new clues for exploring the mechanism of osteogenic differentiation and disclosed the potential of GAS5 as a promising target during osteogenic differentiation.
River systems acts as the critical factor for site selection. In the process of rural evolution, river adaptability created by human settlement is fading away due to inadequate understanding of inherent spatial characteristics. To better understand the inherent law of the applicability of traditional villages river systems , this study proposed the concept of inheritance based on spatial measurement of the correlation between traditional villages and river systems. With the help of GIS10.8 and SPSS26.0 software, this study takes 658 national traditional villages of Hunan and domestic river systems as an example to measure the spatial correlation characteristics,which concludes spatial pattern, spatial density and spatial distance. Summarize the similarity and differences characteristics of spatial distribution. Analyse and interpret the impact index of spatial correlation through the stepwise regression model. The results actually showed that traditional villages are uneven distributed along river systems, which are mainly affected by minority population, elevation and farming industry. In addition, traditional villages are less with the increase of spatial distance from river systems. The values of spatial quantitative measurement and mechanism can reflect the traditional survival wisdom.It can guide significance for spatial growth mechanism of integration with environment and provide references for future conservation and utilization of spatial heritage sustainability.
Osteosarcoma is the most prevalent bone cancer and accounts for over half of sarcomas. In this study, we identified that the treatment of levobupivacaine suppressed proliferation of osteosarcoma cells in vitro . The tumor xenograft analysis showed that levobupivacaine significantly repressed the osteosarcoma cell growth in the nude mice. The treatment of levobupivacaine improved the apoptosis rate and attenuated invasion and migration abilities of osteosarcoma cells. The sphere formation capabilities of osteosarcoma cells were repressed by levobupivacaine. The protein levels of Sox-2, Oct3/4, and Nanog were inhibited by the treatment of levobupivacaine in osteosarcoma cells. Regarding mechanism, we identified that levobupivacaine inhibited MAFB and KAT5 expression in osteosarcoma cells. We observed that lysine acetyltransferase 5 could enriched in the promoter region of MAF BZIP transcription factor B, while levobupivacaine treatment could repressed the enrichment. The suppression of KAT5 by siRNA repressed the enrichment of histone H3 acetylation at lysine 27 and RNA polymerase II on promoter of MAFB. The expression of MAFB was decreased by KAT5 knockdown in osteosarcoma cells. The expression of MAFB was repressed by levobupivacaine, while the overexpression of KAT5 could reverse the repression of MAFB. KAT5 contributes to the cell proliferation and stemness of osteosarcoma cells. The overexpression of KAT5 or MAFB could reverse levobupivacaine-attenuated cell proliferation and stemness of osteosarcoma cells. Therefore, we concluded that local anesthetic levobupivacaine inhibited stemness of osteosarcoma cells by epigenetically repressing MAFB though reducing KAT5 expression. Levobupivacaine may act as a potential therapeutic candidate for osteosarcoma by targeting cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.