Objective: This study was carried out to assess the drug utilization pattern of calcium, Vitamin D supplements, and anti-osteoporosis drugs in patients with osteoporotic fracture in an Indian teaching hospital.Methods: A cross-sectional study was carried out for 6 months in outpatients receiving treatment from the orthopedic department of an Indian teaching hospital. Demographic details, comorbidities, types of fracture, laboratory parameters, and drug therapy were collected from the patient case records who met the study criteria and documented in the data collection form. All the collected details were later analyzed using descriptive statistics.Results: A total of 73 patient’s prescriptions were reviewed, in which 45.2% were male and 54.8% were female. Majority of the patients were in the age group of 50–60 years with mean age of 63.52±11.06 years. Hypertension (27.16%) was the highest comorbidity identified in the study followed by diabetes (18.51%) and coronary artery disease (14.81%). Of the total patients, 65.75% were prescribed with calcium and Vitamin D supplements and 2.73% received bisphosphonates.Conclusion: The study shows the pattern of drug use in elderly with osteoporotic fractures. Since calcium and Vitamin D are vital for treating osteoporotic fractures, adequate monitoring of serum levels of calcium and Vitamin D3 may help to prescribe doses with desired need and safety level.
Using data from five long-term field sites measuring soil moisture, we show the limitations of using soil moisture observations alone to constrain modelled hydrological fluxes. We test a land surface model, MESH/CLASS, with two configurations: one where the soil hydraulic properties are determined using a pedotransfer function (the texture-based calibration) and one where they are assigned directly (the hydraulic properties-based calibration). The hydraulic properties-based calibration outperforms the texture-based calibration in terms of reproducing changes in soil moisture storage within a 1.6 m deep profile at each site, but both perform reasonably well, especially in the summer months. When the models are constrained using observations of changes in soil moisture, the predicted hydrological fluxes are subject to very large uncertainties associated with equifinality. The uncertainty is larger for the hydraulic properties-based calibration, even though the performance was better. We argue that since the pedotransfer functions constrain the model parameters in the texture-based calibrations in an unrealistic way, the texture-based calibration underestimates the uncertainty in the fluxes. We recommend that reproducing observed cumulative changes in soil moisture storage should be considered a necessary but insufficient criterion of model success. Additional sources of information are needed to reduce uncertainties, and these could include improved estimation of the soil hydraulic properties and direct observations of fluxes, particularly evapotranspiration.
Using data from five long-term field sites measuring soil moisture, we show the limitations of using soil moisture observations alone to constrain modelled hydrological fluxes. We test a land surface model, Modélisation Environnementale communautaire-Surface Hydrology/Canadian Land Surface Scheme, with two configurations: one where the soil hydraulic properties are determined using a pedotransfer function (the texture-based calibration) and one where they are assigned directly (the hydraulic properties-based calibration). The hydraulic properties-based calibration outperforms the texture-based calibration in terms of reproducing changes in soil moisture storage within a 1.6 m deep profile at each site, but both perform reasonably well, especially in the summer months. When the models are constrained using observations of changes in soil moisture, the predicted hydrological fluxes are subject to very large uncertainties associated with equifinality. The uncertainty is larger for the hydraulic properties-based calibration, even though the performance was better. We argue that since the pedotransfer functions constrain the model parameters in the texture-based calibrations in an unrealistic way, the texture-based calibration underestimates the uncertainty in the fluxes. We recommend that reproducing observed cumulative changes in soil moisture storage should be considered a necessary but insufficient criterion of model success. Additional sources of information are needed to reduce uncertainties, and these could include improved estimation of the soil hydraulic properties and direct observations of fluxes, particularly evapotranspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.