In this work, a titanium-doped hydroxyapatite (HAp) scaffold was produced from two different sources (natural eggshell and laboratory-grade reagents) to compare the efficacy of natural and synthetic resources of HAp materials on new bone regeneration. This comparative study also reports the effect of Ti doping on the physical, mechanical, and in vitro as well as in vivo biological properties of the HAp scaffold. Pellets were prepared in the conventional powder metallurgy route, compacted, and sintered at 900 °C, showing sufficient porosity for bony ingrowth. The physical-mechanical characterizations were performed by density, porosity evaluation, XRD, FTIR, SEM analysis, and hardness measurement. In vitro interactions were evaluated by bactericidal assay, hemolysis, MTT assay, and interaction with simulated body fluid. All categories of pellets showed absolute nonhemolytic and nontoxic character. Furthermore, significant apatite formation was observed on the Tidoped HAp samples in the simulated body fluid immersion study. The developed porous pellets were implanted to assess the bone defect healing in the femoral condyle of healthy rabbits. A 2 month study after implantation showed no marked inflammatory reaction for any samples. Radiological analysis, histological analysis, SEM analysis, and oxytetracycline labeling studies depicted better invasion of mature osseous tissue in the pores of doped eggshell-derived HAp scaffolds as compared to the undoped HAp, and laboratory-made samples. Quantification using oxytetracycline labeling depicted 59.31 ± 1.89% new bone formation for Ti-doped eggshell HAp as compared to Ti-doped pure HAp (54.41 ± 1.93) and other undoped samples. Histological studies showed the presence of abundant osteoblastic and osteoclastic cells in Ti-doped eggshell HAp in contrast to other samples. Radiological and SEM data also showed similar results. The results indicated that Ti-doped biosourced HAp samples have good biocompatibility, new bone-forming ability, and could be used as a bone grafting material in orthopedic surgery.
β-Tri calcium phosphate ceramics play a significant role in several biomedical application for their marked resorbability and bioactivity. One of them is in bone grafting, where it is used for treating bone defects caused by wounds or osteoporosis. In the present work an in-depth and systematic study of pure and different doped variants (Zinc, Magnesium and Titanium) of β-Tri calcium phosphate was done. We have prepared pure β-Tri calcium phosphate and its different dopants of different strength. All together seven different composition were studied. We have tried to investigate some important features which are the prerequisite for their application. These include lattice parameter study, mechanical properties, contacts behaviour with SBF, haemolytic characteristics, and its cytotoxic nature. The capability of new apatite development on the surface of pure and doped β-TCP samples were also considered and compared by using Simulated Body Fluid (SBF) to observe their interaction with human body fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.