The outbreak of the COVID-19 pandemic is unarguably the biggest catastrophe of the 21st century, probably the most significant global crisis after the second world war. The rapid spreading capability of the virus has compelled the world population to maintain strict preventive measures. The outrage of the virus has rampaged through the healthcare sector tremendously. This pandemic created a huge demand for necessary healthcare equipment, medicines along with the requirement for advanced robotics and artificial intelligence-based applications. The intelligent robot systems have great potential to render service in diagnosis, risk assessment, monitoring, telehealthcare, disinfection, and several other operations during this pandemic which has helped reduce the workload of the frontline workers remarkably. The long-awaited vaccine discovery of this deadly virus has also been greatly accelerated with AI-empowered tools. In addition to that, many robotics and Robotics Process Automation platforms have substantially facilitated the distribution of the vaccine in many arrangements pertaining to it. These forefront technologies have also aided in giving comfort to the people dealing with less addressed mental health complicacies. This paper investigates the use of robotics and artificial intelligence-based technologies and their applications in healthcare to fight against the COVID-19 pandemic. A systematic search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method is conducted to accumulate such literature, and an extensive review on 147 selected records is performed.
The COVID-19 pandemic has wreaked havoc on the whole world, taking over half a million lives and capsizing the world economy in unprecedented magnitudes. With the world scampering for a possible vaccine, early detection and containment are the only redress. Existing diagnostic technologies with high accuracy like RT-PCRs are expensive and sophisticated, requiring skilled individuals for specimen collection and screening, resulting in lower outreach. So, methods excluding direct human intervention are much sought after, and artificial intelligence-driven automated diagnosis, especially with radiography images, captured the researchers’ interest. This survey marks a detailed inspection of the deep learning–based automated detection of COVID-19 works done to date, a comparison of the available datasets, methodical challenges like imbalanced datasets and others, along with probable solutions with different preprocessing methods, and scopes of future exploration in this arena. We also benchmarked the performance of 315 deep models in diagnosing COVID-19, normal, and pneumonia from X-ray images of a custom dataset created from four others. The dataset is publicly available at
https://github.com/rgbnihal2/COVID-19-X-ray-Dataset
. Our results show that DenseNet201 model with Quadratic SVM classifier performs the best (accuracy: 98.16%, sensitivity: 98.93%, specificity: 98.77%) and maintains high accuracies in other similar architectures as well. This proves that even though radiography images might not be conclusive for radiologists, but it is so for deep learning algorithms for detecting COVID-19. We hope this extensive review will provide a comprehensive guideline for researchers in this field.
Traditional wireless sensor networks (WSNs) work over the unlicensed spectrum, and as the spectrum becomes increasingly crowded, they suffer from uncontrolled interference. Recently, cognitive radio based sensor networks (CRSNs) have been envisioned as a promising type of implementation that provides quality-of-service (QoS) features for data transmissions. However, key challenges remain in designing energy-efficient medium access control techniques that can achieve QoS. In this paper, we have developed a multiconstrained QoS aware MAC protocol, MQ-MAC, for a cluster based CRSN. In MQ-MAC, a data channel and a backup channel are assigned to a secondary user by the respective cluster head by using dynamic channel priorities. The user device can switch to the backup channel when a primary user appears to be operating over the data channel. Member nodes of a cluster are also prioritized with respect to the urgency of their generated data packets. Performance evaluations, carried out in NS-3 simulator, show that the proposed MQ-MAC protocol offers better performance than existing MAC protocols for CRSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.