Recent studies suggest that macrophages may influence early stages of the process of hair cell regeneration in lateral line neuromasts; numbers of macrophages were observed to increase prior to increases in hair cell progenitor proliferation, and macrophages have the potential to secrete mitogenic growth factors. We examined whether increases in the number of leukocytes present in the in vivo avian inner ear precede the proliferation of hair cell precursors following aminoglycoside insult. Bromodeoxyuridine (BrdU) immunohistochemistry was used to identify proliferating cells in chicken auditory and vestibular sensory receptor epithelia. LT40, an antibody to the avian homologue of common leukocyte antigen CD45, was used to label leukocytes within the receptor epithelia. Macrophages and, surprisingly, microglia-like cells are present in normal auditory and vestibular sensory epithelia. After hair cell loss caused by treatment with aminoglycosides, numbers of macrophage and microglialike cells increase in the sensory epithelium. The increase in macrophage and microglia-like cell numbers precedes a significant increase in sensory epithelial cell proliferation. The results suggest that macrophage and microglia-like cells may play a role in releasing early signals for cell cycle progression in damaged inner ear sensory epithelium.
Postembryonic production of inner ear hair cells occurs after insult in nonmammalian vertebrates. Recent studies suggest that the fibroblast family of growth factors may play a role in stimulating cell proliferation in mature inner ear sensory epithelium. Effects of acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) were tested on progenitor cell division in cultured auditory and vestibular sensory epithelia taken from posthatch chickens. The effects of heparin, a glycosaminoglycan that often potentiates the effects of the FGFs, were also assessed. Tritiated-thymidine autoradiographic techniques and 5-bromo-2;-deoxyuridine (BrdU) immunocytochemistry were used to identify cells synthesizing DNA. The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick-end-label (TUNEL) method was used to identify apoptotic cells. TUNEL and overall counts of sensory epithelial cell density were used to assess possible cytotoxic effects of the growth factors. FGF-2 inhibited DNA synthesis in vestibular and auditory sensory epithelia and was not cytotoxic at the concentrations employed. FGF-1 did not significantly alter sensory epithelial cell proliferation. Heparin by itself inhibited DNA synthesis in the vestibular sensory epithelia and failed to potentiate the effects of FGF-1 or FGF-2. Heparin was not cytotoxic at the concentrations employed. Results presented here suggest that FGF-2 may be involved in inhibiting cell proliferation or stimulating precursor cell differentiation in avian inner ear sensory epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.