BackgroundMyocardial infarction (MI) documented by late gadolinium enhancement (LGE) has clinical and prognostic importance, but its detection is sometimes compromised by poor contrast between blood and MI. MultiContrast Delayed Enhancement (MCODE) is a technique that helps discriminate subendocardial MI from blood pool by simultaneously providing a T2-weighted image with a PSIR (phase sensitive inversion recovery) LGE image. In this clinical validation study, our goal was to prospectively compare standard LGE imaging to MCODE in the detection of MI.MethodsImaging was performed on a 1.5 T scanner on patients referred for CMR including a LGE study. Prospective comparisons between MCODE and standard PSIR LGE imaging were done by targeted, repeat imaging of slice locations. Clinical data were used to determine MI status. Images at each of multiple time points were read on separate days and categorized as to whether or not MI was present and whether an infarction was transmural or subendocardial. The extent of infarction was scored on a sector-by-sector basis.ResultsSeventy-three patients were imaged with the specified protocol. The majority were referred for vasodilator perfusion exams and viability assessment (37 ischemia assessment, 12 acute MI, 10 chronic MI, 12 other diagnoses). Forty-six patients had a final diagnosis of MI (30 subendocardial and 16 transmural). MCODE had similar specificity compared to LGE at all time points but demonstrated better sensitivity compared to LGE performed early and immediately before and after the MCODE (p = 0.008 and 0.02 respectively). Conventional LGE only missed cases of subendocardial MI. Both LGE and MCODE identified all transmural MI. Based on clinical determination of MI, MCODE had three false positive MI’s; LGE had two false positive MI’s including two of the three MCODE false positives. On a per sector basis, MCODE identified more infarcted sectors compared to LGE performed immediately prior to MCODE (p < 0.001).ConclusionWhile both PSIR LGE and MCODE were good in identifying MI, MCODE demonstrated more subendocardial MI’s than LGE and identified a larger number of infarcted sectors. The simultaneous acquisition of T1 and T2-weighted images improved differentiation of blood pool from enhanced subendocardial MI.
Background-Clinically, chronic atrial dilatation is associated with an increased incidence of atrial fibrillation (AF), but the underlying mechanism is not clear. We have investigated atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation (MR). Methods and Results-Thirteen control and 19 MR dogs (1 month after partial mitral valve avulsion) were studied. Dogs in the MR group were monitored using echocardiography and Holter recording. In open-chest follow-up experiments, electrode arrays were placed on the atria to investigate conduction patterns, effective refractory periods, and inducibility of AF. Alterations in tissue structure and ultrastructure were assessed in atrial tissue samples. At follow-up, left atrial length in MR dogs was 4.09Ϯ0.45 cm, compared with 3.25Ϯ0.28 at baseline (PϽ0.01), corresponding to a volume of 205Ϯ61% of baseline. At follow-up, no differences in atrial conduction pattern and conduction velocities were noted between control and MR dogs. Effective refractory periods were increased homogeneously throughout the left and right atrium. Sustained AF (Ͼ1 hour) was inducible in 10 of 19 MR dogs and none of 13 control dogs (PϽ0.01). In the dilated MR left atrium, areas of increased interstitial fibrosis and chronic inflammation were accompanied by increased glycogen ultrastructurally. Conclusions-Chronic atrial dilatation in the absence of overt heart failure leads to an increased vulnerability to AF that is not based on a decrease in wavelength.
Background: Diffuse myocardial fibrosis, and to a lesser extent global myocardial edema, are important processes in heart disease which are difficult to assess or quantify with cardiovascular magnetic resonance (CMR) using conventional late gadolinium enhancement (LGE) or T1-mapping. Measurement of the myocardial extracellular volume fraction (ECV) circumvents factors that confound T1-weighted images or T1-maps. We hypothesized that quantitative assessment of myocardial ECV would be clinically useful for detecting both focal and diffuse myocardial abnormalities in a variety of common and uncommon heart diseases. Methods: A total of 156 subjects were imaged including 62 with normal findings, 33 patients with chronic myocardial infarction (MI), 33 with hypertrophic cardiomyopathy (HCM), 15 with non-ischemic dilated cardiomyopathy (DCM), 7 with acute myocarditis, 4 with cardiac amyloidosis, and 2 with systemic capillary leak syndrome (SCLS). Motion corrected ECV maps were generated automatically from T1-maps acquired pre-and postcontrast calibrated by blood hematocrit. Abnormally-elevated ECV was defined as >2SD from the mean ECV in individuals with normal findings. In HCM the size of regions of LGE was quantified as the region >2 SD from remote. Results: Mean ECV of 62 normal individuals was 25.4 ± 2.5% (m ± SD), normal range 20.4%-30.4%. Mean ECV within the core of chronic myocardial infarctions (without MVO) (N = 33) measured 68.5 ± 8.6% (p < 0.001 vs normal). In HCM, the extent of abnormally elevated ECV correlated to the extent of LGE (r = 0.72, p < 0.001) but had a systematically greater extent by ECV (mean difference 19 ± 7% of slice). Abnormally elevated ECV was identified in 4 of 16 patients with non-ischemic DCM (38.1 ± 1.9% (p < 0.001 vs normal) and LGE in the same slice appeared "normal" in 2 of these 4 patients. Mean ECV values in other disease entities ranged 32-60% for cardiac amyloidosis (N = 4), 40-41% for systemic capillary leak syndrome (N = 2), and 39-56% within abnormal regions affected by myocarditis (N = 7). Conclusions: ECV mapping appears promising to complement LGE imaging in cases of more homogenously diffuse disease. The ability to display ECV maps in units that are physiologically intuitive and may be interpreted on an absolute scale offers the potential for detection of diffuse disease and measurement of the extent and severity of abnormal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.