Abstract-Studies on patients and large animal models suggest the importance of atrial fibrosis in the development of atrial fibrillation (AF). To investigate whether increased fibrosis is sufficient to produce a substrate for AF, we have studied cardiac electrophysiology (EP) and inducibility of atrial arrhythmias in MHC-TGFcys 33 ser transgenic mice (Tx), which have increased fibrosis in the atrium but not in the ventricles. In anesthetized mice, wild-type (Wt) and Tx did not show significant differences in surface ECG parameters. With transesophageal atrial pacing, no significant differences were observed in EP parameters, except for a significant decrease in corrected sinus node recovery time in Tx mice. Burst pacing induced AF in 14 of 29 Tx mice, whereas AF was not induced in Wt littermates (PϽ0.01). In Langendorff perfused hearts, atrial conduction was studied using a 16-electrode array. Epicardial conduction velocity was significantly decreased in the Tx RA compared with the Wt RA. In the Tx LA, conduction velocity was not significantly different from Wt, but conduction was more heterogeneous. Action potential characteristics recorded with intracellular microelectrodes did not reveal differences between Wt and Tx mice in either atrium. Thus, in this transgenic mouse model, selective atrial fibrosis is sufficient to increase AF inducibility. Key Words: atrial fibrillation Ⅲ fibrosis Ⅲ growth factors A trial fibrillation (AF) is a commonly occurring arrhythmia, present in Ϸ5% of people older than age 65 years. Clinically, increased vulnerability to AF is also associated with underlying heart disease, such as congestive heart failure (CHF) and mitral valve disease. 1 Increased inducibility of AF has been observed in animal models of aging, 2,3 CHF, 4 atrial tachycardia-induced cardiomyopathy, 5,6 and chronic atrial dilatation caused by mitral regurgitation. 7 Theoretical models have implicated atrial interstitial fibrosis as a substrate for AF. 8,9 Atrial interstitial fibrosis increases with age in humans and has been observed in patients with AF 10,11 and in animal models of aging, 2,3 mitral regurgitation, 7 and CHF. 4 With the unknown cause of atrial fibrosis in humans and the presence of compounding factors in animal models, the contribution of atrial fibrosis to AF substrate formation remains unclear. Studies to date have been limited by lack of animal models of selective atrial fibrosis to study the effects of fibrosis without the presence of heart failure or other underlying heart disease.The purpose of this study was to determine the effect of atrial fibrosis on the AF vulnerability. We have studied a transgenic mouse model with cardiac overexpression of a constitutively active form of transforming growth factor (TGF)-1, MHC-TGFcys 33 ser. 12 This model has been previously demonstrated to have elevated TGF-1 activity in the atria and ventricles. Cardiac development and morphology appear normal, except for increased interstitial fibrosis in the atrial myocardium. Ventricular size and histology is no...
Background-Clinically, chronic atrial dilatation is associated with an increased incidence of atrial fibrillation (AF), but the underlying mechanism is not clear. We have investigated atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation (MR). Methods and Results-Thirteen control and 19 MR dogs (1 month after partial mitral valve avulsion) were studied. Dogs in the MR group were monitored using echocardiography and Holter recording. In open-chest follow-up experiments, electrode arrays were placed on the atria to investigate conduction patterns, effective refractory periods, and inducibility of AF. Alterations in tissue structure and ultrastructure were assessed in atrial tissue samples. At follow-up, left atrial length in MR dogs was 4.09Ϯ0.45 cm, compared with 3.25Ϯ0.28 at baseline (PϽ0.01), corresponding to a volume of 205Ϯ61% of baseline. At follow-up, no differences in atrial conduction pattern and conduction velocities were noted between control and MR dogs. Effective refractory periods were increased homogeneously throughout the left and right atrium. Sustained AF (Ͼ1 hour) was inducible in 10 of 19 MR dogs and none of 13 control dogs (PϽ0.01). In the dilated MR left atrium, areas of increased interstitial fibrosis and chronic inflammation were accompanied by increased glycogen ultrastructurally. Conclusions-Chronic atrial dilatation in the absence of overt heart failure leads to an increased vulnerability to AF that is not based on a decrease in wavelength.
Atrial fibrillation (AF) is commonly associated with congestive heart failure (CHF), and CHF has been shown to be associated with atrial structural remodeling resulting in fibrosis. Atrial interstitial fibrosis has been seen in patients with CHF and in animal models of pacing-induced heart failure. With atrial fibrosis, conduction abnormalities result in increased AF vulnerability. The mechanism of AF associated with CHF is under debate, as both focal and reentrant mechanisms have been observed in animal models of CHF. However, recent studies using frequency-domain analysis have shown that the AF within this model is characterized by discrete, stable, high-frequency areas. The precise signaling processes involved in the development of atrial fibrosis are unknown. Angiotensin appears to play a role, as inhibition of angiotensin-converting enzyme (or angiotensin-receptor blocker) blunts atrial fibrosis in animal models of heart failure and decreases the incidence of AF in patients with heart failure. Transforming growth factor-beta (TGF-beta) also appears to play an important role. Mouse models that overexpress TGF-beta1 have profound atrial fibrosis and AF (with normal ventricles). Heart failure in canine models also produces increases in atrial TGF-beta1 expression, and inhibition of this expression prevents atrial fibrosis and the development of a substrate for AF. Atrial fibrosis appears to play a role in the development of a vulnerable substrate for AF, especially in the setting of CHF.
Background-Atrial fibrosis is an important substrate in atrial fibrillation (AF), particularly in the setting of structural heart disease. In a canine model, congestive heart failure (CHF) produces significant atrial fibrosis and the substrate for sustained AF. This atrial remodeling is a potential therapeutic target. The objective of the present study is to evaluate the effects of the antifibrotic drug pirfenidone (PFD) on arrhythmogenic atrial remodeling in a canine CHF model. Methods and Results-We studied 15 canines, divided equally into 3 groups: control, CHF canines not treated with PFD, and CHF canines treated with PFD. CHF was induced by ventricular tachypacing (220 bpm for 3 weeks), and oral PFD was administered for the 3-week pacing period. We performed electrophysiology and AF vulnerability studies, atrial fibrosis measurements, and atrial cytokine expression studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.