Recombinant Semliki Forest viruses (SFV) that express one or none of the viral structural proteins were used to infect cells and to analyze the fate of incoming superinfecting wild-type viruses. It was found that in addition to the previously described block in replication that superinfecting viruses encounter within 15 min of infection, other mechanisms of superinfection inhibition occurred at later times. Over a 6-hr infection period, inhibition was seen in binding of virus to the cell surface, in acid-activated penetration into the cytoplasm, and in uncoating of nucleocapsids. For each of these processes, the inhibitory mechanism was investigated. In summary, we found that infection evoked several independent mechanisms for blocking the entry and uncoating of superinfecting viruses. The results also offered new insights into the normal processes of penetration and uncoating of SFV.
The development of the Drosophila wing involves progressive patterning events. In the second larval instar, cells of the wing disc are allotted wing or notum fates by a wingless-mediated process and dorsal or ventral fates by the action of apterous and wingless. Notch-mediated signalling is required for the expression of the genes vestigial and scalloped in the presumptive wing blade. Later, wingless, Notch and cut are involved in cell fate specification along the wing margin. The function of scalloped in this process is not well understood and is the focus of this study. We show that patterning downstream of Notch and wingless pathways is altered in scalloped mutants. Reduction in scalloped expression results in a loss of expression of wing blade- and margin-specific markers. Misexpression of scalloped in the presumptive wing causes misexpression of scalloped, vestigial and wingless reporter genes. However, high levels of scalloped expression have a negative influence on wingless, vestigial and its own expression. Our results demonstrate that scalloped functions in a level-dependent manner in the presumptive wing blade in a loop that involves vestigial and itself. We suggest that wing development requires the regulated expression of scalloped together with vestigial-the "wing formation" effects of Vestigial in other imaginal discs are probably due to its interaction with the scalloped gene product normally expressed in these discs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.