TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT), image guided radiation therapy (IGRT), and small field dosimetry like stereotactic radiosurgery. Film is convenient to use, spatially accurate, and provides a permanent record of the integrated two dimensional dose distributions. However, there are several challenges to obtaining high quality dosimetric results with film, namely, the dependence of optical density on photon energy, field size, depth, film batch sensitivity differences, film orientation, processing conditions, and scanner performance. Prior to the clinical implementation of a film dosimetry program, the film, processor, and scanner need to be tested to characterize them with respect to these variables. Also, the physicist must understand the basic characteristics of all components of film dosimetry systems. The primary mission of this task group report is to provide guidelines for film selection, irradiation, processing, scanning, and interpretation to allow the physicist to accurately and precisely measure dose with film. Additionally, we present the basic principles and characteristics of film, processors, and scanners. Procedural recommendations are made for each of the steps required for film dosimetry and guidance is given regarding expected levels of accuracy. Finally, some clinical applications of film dosimetry are discussed.
Real time optimized treatment planning at the time of the implant is desirable for ultrasound-guided transperineal 125I permanent prostate implants. Currently available optimization algorithms are too slow to be used in the operating room. The goal of this work is to develop a robust optimization algorithm, which is suitable for such application. Three different genetic algorithms (sGA, sureGA and securGA) were developed and compared in terms of the number of function evaluations and the corresponding fitness. The optimized dose distribution was achieved by searching the best seed distribution through the minimization of a cost function. The cost function included constraints on the periphery dose of the planned target volume, the dose uniformity within the target volume, and the dose to the critical structure. Adjustment between the peripheral dose, the dose uniformity and critical structure dose can be achieved by varying the weighting factors in the cost function. All plans were evaluated in terms of the dose nonuniformity ratio, the conformation number and the dose volume histograms. Among these three GA algorithms, the securGA provided the best performance. Within 2500 function evaluations, the near optimum results were obtained. For a large target volume (5 cm x 4 cm x 4.5 cm) including urethra with 20 needles, the computer time needed for the optimization was less than 5 min on a HP735 workstation. The results showed that once the best set of parameters was found, they were applicable for all sizes of prostate volume. For a fixed needle geometry, the optimized plan showed much better dose distribution than that of nonoptimized plan. If the critical structure was considered in the optimization, the dose to the critical structure could be minimized. In the cases of irregular and skewed needle geometry, the optimized treatment plans were almost as good as ideal needle geometry. It is concluded that this new genetic algorithm (securGA) allows for an efficient and rapid optimization of dose distribution, which is suitable for real time treatment planning optimization for ultrasound-guided prostate implant.
The surface brachytherapy Task Group report number 253 discusses the common treatment modalities and applicators typically used to treat lesions on the body surface. Details of commissioning and calibration of the applicators and systems are discussed and examples are given for a risk-based analysis approach to the quality assurance measures that are necessary to consider when establishing a surface brachytherapy program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.