Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century.impervious surfaces ͉ land use change
Water temperatures are increasing in many streams and rivers throughout the US. We analyzed historical records from 40 sites and found that 20 major streams and rivers have shown statistically significant, long‐term warming. Annual mean water temperatures increased by 0.009–0.077°C yr−1, and rates of warming were most rapid in, but not confined to, urbanizing areas. Long‐term increases in stream water temperatures were typically correlated with increases in air temperatures. If stream temperatures were to continue to increase at current rates, due to global warming and urbanization, this could have important effects on eutrophication, ecosystem processes such as biological productivity and stream metabolism, contaminant toxicity, and loss of aquatic biodiversity.
SignificanceSalinization and alkalinization impact water quality, but these processes have been studied separately, except in arid regions. Globally, salinization has been largely attributed to agriculture, resource extraction, and land clearing. Alkalinization has been attributed to recovery from acidification, with less recognition as an environmental issue. We show that salinization and alkalinization are linked, and trends in these processes impact most of the drainage area of the United States. Increases in salinity and alkalinity are caused by inputs of salts containing strong bases and carbonates that originate from anthropogenic sources and accelerated weathering. We develop a conceptual model unifying our understanding of salinization and alkalinization and its drivers and impacts on fresh water in North America over the past century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.