CD133 marks self-renewing cancer stem cells (CSCs) in a variety of solid tumors, and CD133+ tumor-initiating cells are known markers of chemo-and radio-resistance in multiple aggressive cancers, including glioblastoma (GBM), that may drive intra-tumoral heterogeneity. Here, we report three immunotherapeutic modalities based on a human anti-CD133 antibody fragment that targets a unique epitope present in glycosylated and non-glycosylated CD133 and studied their effects on targeting CD133+ cells in patient-derived models of GBM. We generated an immunoglobulin G (IgG) (RW03-IgG), a dual-antigen T cell engager (DATE), and a CD133-specific chimeric antigen receptor T cell (CAR-T): CART133. All three showed activity against patient-derived CD133+ GBM cells, and CART133 cells demonstrated superior efficacy in patient-derived GBM xenograft models without causing adverse effects on normal CD133+ hematopoietic stem cells in humanized CD34+ mice. Thus, CART133 cells may be a therapeutically tractable strategy to target CD133+ CSCs in human GBM or other treatment-resistant primary cancers.ll Clinical and Translational Report
In Alzheimer’s disease (AD), soluble tau accumulates and deposits as neurofibrillary tangles (NFTs). However, a precise toxic mechanism of tau is not well understood. We hypothesized that over-expression of wild-type tau down-regulates brain-derived neurotrophic factor (BDNF), a neurotrophic peptide essential for learning and memory. Two transgenic mouse models of human tau expression and human tau (hTau40)-transfected human neuroblastoma (SH-SY5Y) cells were used to examine the effect of excess or pathologically modified wild-type human tau on BDNF expression. Both transgenic mouse models, with or without NFTs, as well as hTau40-SH-SY5Y cells significantly down-regulated BDNF mRNA compared to controls. Similarly, transgenic mice over-expressing amyloid-β significantly down-regulated BDNF expression. However, when crossed with tau knockout mice, the resulting animals exhibited BDNF levels that were not statistically different from wild-type mice. These results demonstrate that excess or pathologically modified wild-type human tau down-regulates BDNF and that neither a mutation in tau nor the presence of NFTs is required for toxicity. Moreover, our findings suggest that tau at least partially mediates amyloid-β-induced BDNF down-regulation. Therefore, AD treatments targeting Aβ alone may not be effective without considering the impact of tau pathology on neurotrophic pathways.
Medulloblastoma (MB), the most common malignant paediatric brain tumor, is currently treated using a combination of surgery, craniospinal radiotherapy and chemotherapy. Owing to MB stem cells (MBSCs), a subset of MB patients remains untreatable despite standard therapy. CD133 is used to identify MBSCs although its functional role in tumorigenesis has yet to be determined. In this work, we showed enrichment of CD133 in Group 3 MB is associated with increased rate of metastasis and poor clinical outcome. The signal transducers and activators of transcription-3 (STAT3) pathway are selectively activated in CD133+ MBSCs and promote tumorigenesis through regulation of c-MYC, a key genetic driver of Group 3 MB. We screened compound libraries for STAT3 inhibitors and treatment with the selected STAT3 inhibitors resulted in tumor size reduction in vivo. We propose that inhibition of STAT3 signaling in MBSCs may represent a potential therapeutic strategy to treat patients with recurrent MB.
Co-expression and cross-regulation of the four TCF/LEFs render their redundant and unique functions ambiguous. Here, we describe quadruple-knockout (QKO) mouse ESCs lacking all full-length TCF/LEFs and cell lines rescued with TCF7 or TCF7L1. QKO cells self-renew, despite gene expression patterns that differ significantly from WT, and display delayed, neurectoderm-biased, embryoid body (EB) differentiation. QKO EBs have no contracting cardiomyocytes and differentiate poorly into mesendoderm but readily generate neuronal cells. QKO cells and TCF7L1-rescued cells cannot efficiently activate TCF reporters, whereas TCF7-rescued cells exhibit significant reporter responsiveness. Surprisingly, despite dramatically different transactivation capacities, re-expression of TCF7L1 or TCF7 in QKO cells restores their tri-lineage differentiation ability, with similar lineage marker expression patterns and beating cardiomyocyte frequencies observed in EBs. Both factors also similarly affect the transcriptome of QKO cells. Our data reveal that a single TCF, regardless of its activation capacity, is sufficient for effective trilineage differentiation of ESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.