Background
Direct pulp capping is a vital pulp therapy for a pin-point dental pulp exposure. Applying a pulp capping material leads to the formation of a dentin bridge and protects pulp vitality. The aim of this study was to compare the effects of four dental materials, DyCal®, ProRoot® MTA, Biodentine™, and TheraCal™ LC in vitro.
Methods
Human dental pulp stem cells (hDPs) were isolated and characterized. Extraction medium was prepared from the different pulp capping materials. The hDP cytotoxicity, proliferation, and migration were examined. The odonto/osteogenic differentiation was determined by alkaline phosphatase, Von Kossa, and alizarin red s staining. Osteogenic marker gene expression was evaluated using real-time polymerase chain reaction.
Results
ProRoot® MTA and Biodentine™ generated less cytotoxicity than DyCal® and TheraCal™ LC, which were highly toxic. The hDPs proliferated when cultured with the ProRoot® MTA and Biodentine™ extraction media. The ProRoot® MTA and Biodentine™ extraction medium induced greater cell attachment and spreading. Moreover, the hDPs cultured in the ProRoot® MTA or Biodentine™ extraction medium migrated in a similar manner to those in serum-free medium, while a marked reduction in cell migration was observed in the cells cultured in DyCal® and TheraCal™ LC extraction media. Improved mineralization was detected in hDPs maintained in ProRoot® MTA or Biodentine™ extraction medium compared with those in serum-free medium.
Conclusion
This study demonstrates the favorable in vitro biocompatibility and bioactive properties of ProRoot® MTA and Biodentine™ on hDPs, suggesting their superior regenerative potential compared with DyCal® and TheraCal™.
Platelet-rich fibrin (PRF) promotes wound healing by providing the release of growth factors. Here, the influence of Thai and Murrah bubaline blood derived PRF on canine periodontal ligament cells (cPDLs) was investigated. PRF was prepared from Thai and Murrah buffaloes with single centrifugation. Results demonstrated that Thai bubaline blood derived PRF exhibited fiber-mesh like morphology and contained more platelet entrapment than Murrah bubaline blood derived PRF. Both bubaline PRFs were able to degrade in vitro under condition with trypsin. Thai but not Murrah bubaline blood derived PRF promoted cPDLs proliferation in serum free and 2% serum culture conditions. Correspondingly, the significant upregulation of KI67 mRNA expression was observed in those cells treated with Thai bubaline blood derived PRF. However, both Thai and Murrah bubaline blood derived PRF accelerated cell migration in an in vitro wound healing assay and facilitated cell spreading. Further, cPDLs cultured in osteogenic induction medium supplemented with Thai bubaline blood derived PRF exhibited the increased mineral deposition in vitro. Frozen Thai bubaline blood derived PRF also promoted cell proliferation, KI67 mRNA expression, cell migration, and cell spreading in cPDLs. Taken these evidence together, bubaline blood derived PRF could provide potential benefits for canine periodontal tissue healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.