Plants have developed highly efficient and remarkable mechanisms to survive under frequent and extreme environmental stress conditions. Exposure of plants to various stress factors is associated with coordinated changes in gene expression at the transcriptional level and hence transcription factors, such as those belonging to the MYB family play a central role in triggering the right responses. MYB transcription factors have been extensively studied in regard of their involvement in the regulation of a number of such stress responses in plants. Genetic and molecular biological studies, primarily in Arabidopsis, have also begun to unravel the role of MYB transcription factors in the epigenetic regulation of stress responses in plants. This review focuses on the role of MYB transcription factors in the regulation of various stress responses in general, highlighting on recent advances in our understanding of the involvement of this class of transcription factors in epigenetic regulation of stress response in plant genome.
Plants are constantly exposed to a wide range of environmental genotoxic stress factors including obligatory exposure to UV radiation in sunlight. Here, we report the functional characterization of a DNA repair protein, AtPolλ, a homolog of mammalian DNA polymerase λ in Arabidopsis, in relation to its role in repair of UV-B-induced DNA damage during early stages of seedling development. The abundance of the AtPolλ transcript and the protein levels were distinctly increased in response to UV-B irradiation in 6-day-old wild-type seedlings. Growth of atpolλ mutant seedlings, deficient in AtPolλ expression, was more sensitive to UV-B radiation compared with wild-type plants when seeds were exposed to UV-B radiation before germination. The atpolλ mutants showed accumulation of relatively higher amounts of DNA lesions than wild-type plants following UV-B exposure and were less proficient in repair of UV-induced DNA damage. Increased accumulation of AtPolλ protein in UV-B-irradiated 6-day-old wild-type seedlings during the dark recovery period has indicated a possible role for the protein in repair of UV-B-induced lesions in the dark. Overexpression of AtPolλ in the atpolλ mutant line partially complemented the repair proficiency of UV-B-induced DNA damage. In vitro repair synthesis assays using whole-cell extracts from the wild-type and atpolλ mutant line have further demonstrated the role of AtPolλ in repair synthesis of UV-B-damaged DNA in the dark through an excision repair mechanism. Overall, our results have indicated the possible involvement of AtPolλ in a plant's response for repair of UV-B-mediated DNA damage during seedling development.
BackgroundThe DNA repair and recombination (DRR) proteins protect organisms against genetic damage, caused by environmental agents and other genotoxic agents, by removal of DNA lesions or helping to abide them.ResultsWe identified genes potentially involved in DRR mechanisms in Arabidopsis and rice using similarity searches and conserved domain analysis against proteins known to be involved in DRR in human, yeast and E. coli. As expected, many of DRR genes are very similar to those found in other eukaryotes. Beside these eukaryotes specific genes, several prokaryotes specific genes were also found to be well conserved in plants. In Arabidopsis, several functionally important DRR gene duplications are present, which do not occur in rice. Among DRR proteins, we found that proteins belonging to the nucleotide excision repair pathway were relatively more conserved than proteins needed for the other DRR pathways. Sub-cellular localization studies of DRR gene suggests that these proteins are mostly reside in nucleus while gene drain in between nucleus and cell organelles were also found in some cases.ConclusionsThe similarities and dissimilarities in between plants and other organisms' DRR pathways are discussed. The observed differences broaden our knowledge about DRR in the plants world, and raises the potential question of whether differentiated functions have evolved in some cases. These results, altogether, provide a useful framework for further experimental studies in these organisms.
Plants, being sessile in nature, are constantly exposed to various environmental stresses, such as solar UV radiations, soil salinity, drought and desiccation, rehydration, low and high temperatures and other vast array of air and soil borne chemicals, industrial waste products, metals and metalloids. These agents, either directly or indirectly via the induction of oxidative stress and overproduction of reactive oxygen species (ROS), frequently perturb the chemical or physical structures of DNA and induce both cytotoxic or genotoxic stresses. Such condition, in turn, leads to genome instability and thus eventually severely affecting plant health and crop yield. With the growing industrialization process and non-judicious use of chemical fertilizers, the heavy metal mediated chemical toxicity has become one of the major environmental threats for the plants around the globe. The heavy metal ions cause damage to the structural, enzymatic and non-enzymatic components of plant cell, often resulting in loss of cell viability, thus negatively impacting plant growth and development. Plants have also evolved with an extensive and highly efficient mechanism to respond and adapt under such heavy metal toxicity mediated stress conditions. In addition to morpho-anatomical, hormonal and biochemical responses, at the molecular level, plants respond to heavy metal stress induced oxidative and genotoxic damage via the rapid change in the expression of the responsive genes at the transcriptional level. Various families of transcription factors play crucial role in triggering such responses. Apart from transcriptional response, epigenetic modifications have also been found to be essential for maintenance of plant genome stability under genotoxic stress. This review represents a comprehensive survey of recent advances in our understanding of plant responses to heavy metal mediated toxicity in general with particular emphasis on the transcriptional and epigenetic responses and highlights the importance of understanding the potential targets in the associated pathways for improved stress tolerance in crops.
DNA polymerase l (Pol l) is the sole member of family X DNA polymerase in plants and plays a crucial role in nuclear DNA damage repair. Here, we report the transcriptional up-regulation of Arabidopsis (Arabidopsis thaliana) AtPoll in response to abiotic and genotoxic stress, including salinity and the DNA cross-linking agent mitomycin C (MMC). The increased sensitivity of atpoll knockout mutants toward high salinity and MMC treatments, with higher levels of accumulation of double strand breaks (DSBs) than wild-type plants and delayed repair of DSBs, has suggested the requirement of Pol l in DSB repair in plants.AtPoll overexpression moderately complemented the deficiency of DSB repair capacity in atpoll mutants. Transcriptional upregulation of major nonhomologous end joining (NHEJ) pathway genes KU80, X-RAY CROSS COMPLEMENTATION PROTEIN4 (XRCC4), and DNA Ligase4 (Lig4) along with AtPoll in Arabidopsis seedlings, and the increased sensitivity of atpoll-2/atxrcc4 and atpoll-2/atlig4 double mutants toward high salinity and MMC treatments, indicated the involvement of NHEJ-mediated repair of salinity-and MMC-induced DSBs. The suppressed expression of NHEJ genes in atpoll mutants suggested complex transcriptional regulation of NHEJ genes. Pol l interacted directly with XRCC4 and Lig4 via its N-terminal breast cancer-associated C terminus (BRCT) domain in a yeast two-hybrid system, while increased sensitivity of BRCT-deficient Pol l-expressing transgenic atpoll-2 mutants toward genotoxins indicated the importance of the BRCT domain of AtPoll in mediating the interactions for processing DSBs. Our findings provide evidence for the direct involvement of DNA Pol l in the repair of DSBs in a plant genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.