Four biorefinery technologies were studied for feedstock allocation, optimum facility location, economic feasibility, and their economic impacts on Alabama. The studied technologies are: (1) circulated fluidized bed gasification of woody biomass for Fischer-Tropsch (F-T) fuels and power production; (2) simultaneous saccharification and fermentation (SSF) of paper sludge for ethanol production; (3) direct spouted bed (DSB) gasification with air and steam of woody biomass for power; and (4) direct combustion of woody biomass for power production. The optimum biorefinery locations for all four processes were southwestern Alabama. The average transportation distance for woody biomass was about 32 miles (51.5 km) to the biorefinery plants; however, longer transportation distances were required for paper sludge where the feedstock is provided by the pulp and paper plants in the region. The SSF process along with the DSB gasification process were the only economically feasible biorefinery technologies with an over 80 and 22.5% internal rate of return, respectively. Economic impacts of all the studied biorefinery technologies were comparable to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.