The design of a microelectromechanical systems (MEMS) ultra-wideband (UWB) RMS power sensor is presented. The sensor incorporates a microfabricated Fe-Co-B core planar inductor and a microfabricated vibrating diaphragm variable capacitor on adhesively bonded glass wafers in a footprint area of 970 × 970 µm2 to operate in the 3.1–10.6 GHz UWB frequency range. When exposed to a far-field UWB electromagnetic radiation, the planar inductor acts as a loop antenna to generate a frequency-independent voltage across the MEMS capacitor. The voltage generates a coulombic attraction force between the diaphragm and backplate that deforms the diaphragm to change the capacitance. The frequency-independent capacitance change is sensed using a transimpedance amplifier to generate an output voltage. The sensor exhibits a linear capacitance change induced voltage relation and a calculated sensitivity of 4.5 aF/0.8 µA/m. The sensor can be used as a standalone UWB power sensor or as a 2D array for microwave-based biomedical diagnostic imaging applications or for non-contact material characterization. The device can easily be tailored for power sensing in other application areas such as, 5G, WiFi, and Internet-of-Things (IoT). The foreseen fabrication technique can rely on standard readily available microfabrication techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.