Information explosion creates dilemma in finding preferred products from the digital marketplaces. Thus, it is challenging for online companies to develop an efficient recommender system for large portfolio of products. The aim of this research is to develop an integrated recommender system model for online companies, with the ability of providing personalized services to their customers. The K-nearest neighbors (KNN) algorithm uses similarity matrices for performing the recommendation system; however, multiple drawbacks associated with the conventional KNN algorithm have been identified. Thus, an algorithm considering weight metric is used to select only significant nearest neighbors (SNN). Using secondary dataset on MovieLens and combining four types of prediction models, the study develops an integrated recommender system model to identify SNN and predict accurate personalized recommendations at lower computation cost. A timestamp used in the integrated model improves the performance of the personalized recommender system. The research contributes to behavioral analytics and recommender system literature by providing an integrated decision-making model for improved accuracy and aggregate diversity. The proposed prediction model helps to improve the profitability of online companies by selling diverse and preferred portfolio of products to their customers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.