Climate change causes extreme weather events worldwide such as increasing temperatures and changing rainfall patterns. With South Korea facing growing damage from the increased frequency of localized heavy rains. In particular, its steep slope lands, including mountainous areas, are vulnerable to damage from landslides and debris flows. In addition, localized short-term heavy rains that occur in urban areas with extremely high intensity tend to lead a sharp increase in damage from soil-related disasters and cause huge losses of life and property. Currently, South Korea forecasts landslides and debris flows using the standards for forecasting landslides and heavy rains. However, as the forecasting is conducted separately for rainfall intensity and accumulated rainfall, this lacks a technique that reflects both amount and intensity of rainfall in an episode of localized heavy rainfall. In this study, aims to develop such a technique by collecting past cases of debris flow occurrences and rainfall events that accompanied debris flows to calculate the rainfall triggering index (RTI) reflecting accumulated rainfall and rainfall intensity. In addition, the RTI is converted into the critical accumulated rainfall (Rc) to use rainfall information and provide real-time forecasting. The study classifies the standards for flow debris forecasting into three levels: ALERT (10–50%), WARNING (50–70%), and EMERGENCY (70% or higher), to provide a nomogram for 6 h, 12 h, and 24 h. As a result of applying this classification into the actual cases of Seoul, Chuncheon, and Cheongju, it is found that about 2–4 h of response time is secured from the point of the Emergency level to the occurrence of debris flows.
Ongoing climate change causes abnormal climate events worldwide such as increasing temperatures and changing rainfall patterns. With South Korea facing growing damage from the increased frequency of localized heavy rains, the country is not an exception. In particular, its steep slope lands, including mountainous areas, are vulnerable to damage from landslides and debris flows. In addition, localized short-term heavy rains that occur in urban areas with extremely high intensity tend to lead a sharp increase in damage from soil-related disasters and cause huge losses of life and property. Currently, South Korea predicts landslides and debris flows using the standards for forecasting landslides and heavy rains. However, as the forecasting is conducted separately for rainfall intensity and accumulated rainfall, this lacks a technique that reflects both amount and intensity of rainfall in an episode of localized heavy rainfall. This study, therefore, aims to develop such a technique by collecting past cases of debris flow occurrences and rainfall events that accompanied debris flows to calculate the rainfall triggering index (RTI) reflecting accumulated rainfall and rainfall intensity. In addition, the RTI is converted into the critical accumulated rainfall (Rc) to use precipitation information and provide real-time forecasting. The study classifies the standards for flow debris forecasting into three levels: ALERT (10%–50%), WARNING (50%–70%), and EMERGENCY (70% or higher), to provide a nomogram for 6 hr, 12 hr, and 24 hr. As a result of applying this classification into the actual cases of Seoul, Chuncheon, and Cheongju, it is found that about 2–4 hr of response time is secured from the point of the Emergency level to the occurrence of debris flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.