This study investigates the behavior of a turbopump assembly during critical cavitation of the propellant pumps in the upper rocket engine of the Korea Space Launch Vehicle-II. Turbopumps operate under conditions involving low pressure at the pump inlet and high rotational speeds to allow for a lightweight design. This severe environment can easily cause cavitation to occur in the pump. This cavitation can then cause the pump operation to fail. As the cavitation number in the pump decreases below the critical point, the pump fails to operate. There is concern regarding the behavior of the turbopump assembly arising from pump failure due to cavitation. It is necessary to verify the problems that may occur if the turbopump assembly operates under extreme conditions, such like the critical cavitation. This study performed tests to investigate the breakdown of pumps in the turbopump assembly. Tests were conducted with liquid nitrogen, water, and high-pressure air instead of the mediums used during actual operation of liquid oxygen, kerosene, and hot gas. The turbopump was tested at the design point of 27,000 rpm, while the inlet pressure of each pump was controlled to approach the critical cavitation number. The turbine power output was maintained during the tests. The results show that the breakdown point of the oxidizer pump using liquid nitrogen, which is a cryogenic medium, occurred at a lower cavitation number than during an individual component suction performance test using water. The fuel pump using water, meanwhile, experiences breakdown at similar cavitation numbers in both tests. As the breakdown of the pump occurs, the power required by that pump decreases, and the rotational speed of the turbopump increases. Compared with individual pump suction performance tests, this breakdown test can be used to determine the limit of the propellant inlet pressure of the turbopump and to characterize the behavior of the turbopump assembly when a breakdown occurs. Vibrations were also analyzed for tests at a high cavitation number and at the critical cavitation number. The vibration increased with breakdown and notable frequencies were analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.