The analysis of partial discharge (PD) signals has been identified as a standard diagnostic tool for monitoring the condition of different electrical apparatuses. This study proposes an approach to detecting PD patterns in gas-insulated switchgear (GIS) using a long short-term memory (LSTM) recurrent neural network (RNN). The proposed method uses phase-resolved PD (PRPD) signals as input, extracts low-level features, and finally, classifies faults in GIS. In the proposed method, LSTM networks can learn temporal dependencies directly from PRPD signals. Most existing models use support vector machines (SVMs) and mainly focus on improving feature representation and extraction manually to analyze PRPD signals. However, the proposed model captures important temporal features with the help of its low-level feature extraction capability from raw inputs. It outperforms conventional SVMs and achieves 96.74% classification accuracy for PRPDs in GIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.