Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to address the challenges arising with variable sizes, they usually use complex models that are more suitable for general semantic segmentation problems. In this paper, we propose a novel architecture called Multi-Scale Residual Fusion Network (MSRF-Net), which is specially designed for medical image segmentation. The proposed MSRF-Net is able to exchange multi-scale features of varying receptive fields using a Dual-Scale Dense Fusion (DSDF) block. Our DSDF block can exchange information rigorously across two different resolution scales, and our MSRF sub-network uses multiple DSDF blocks in sequence to perform multi-scale fusion. This allows the preservation of resolution, improved information flow and propagation of both high-and low-level features to obtain accurate segmentation maps. The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets. Extensive experiments on MSRF-Net demonstrate that the proposed method outperforms the cutting-edge medical image segmentation methods on four publicly available datasets. We achieve the Dice Coefficient (DSC) of 0.9217, 0.9420, and 0.9224, 0.8824 on Kvasir-SEG, CVC-ClinicDB, 2018 Data Science Bowl dataset, and ISIC-2018 skin lesion segmentation challenge dataset respectively. We further conducted generalizability tests and achieved DSC of 0.7921 and 0.7575 on CVC-ClinicDB and Kvasir-SEG, respectively.
Developing an automatic signature verification system is challenging and demands a large number of training samples. This is why synthetic handwriting generation is an emerging topic in document image analysis. Some handwriting synthesizers use the motor equivalence model, the well-established hypothesis from neuroscience, which analyses how a human being accomplishes movement. Specifically, a motor equivalence model divides human actions into two steps: 1) the effector independent step at cognitive level and 2) the effector dependent step at motor level. In fact, recent work reports the successful application to Western scripts of a handwriting synthesizer, based on this theory. This paper aims to adapt this scheme for the generation of synthetic signatures in two Indic scripts, Bengali (Bangla), and Devanagari (Hindi). For this purpose, we use two different online and offline databases for both Bengali and Devanagari signatures. This paper reports an effective synthesizer for static and dynamic signatures written in Devanagari or Bengali scripts. We obtain promising results with artificially generated signatures in terms of appearance and performance when we compare the results with those for real signatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.