Evacuated-tube solar collector (ETSC) is developed to achieve high heating medium temperature. Heat transfer fluid contained inside a copper heat pipe directly affects the heating medium temperature. A 10 mol% of ethylene-glycol in water is the heat transfer fluid in this system. The purpose of this study is to modify inner structure of the evacuated tube for promoting heat transfer through aluminum fin to the copper heat pipe by inserting stainless-steel scrubbers in the evacuated tube to increase heat conduction surface area. The experiment is set up to measure the temperature of heat transfer fluid at a heat pipe tip which is a heat exchange area between heat transfer fluid and heating medium. The vapor/ liquid equilibrium (VLE) theory is applied to investigate phase change behavior of the heat transfer fluid. Mathematical model validated with 6 experimental results is set up to investigate the performance of ETSC system and evaluate the feasibility of applying the modified ETSC in small-scale industries. The results indicate that the average temperature of heat transfer fluid in a modified tube increased to 160.32 °C which is higher than a standard tube by approximately 22 °C leading to the increase in its efficiency by 34.96%.
Due to the high efficiency of photocatalytic process for the environmental treatments, titanium dioxide (TiO 2 ) is a popular used as photocatalyst material. However, the practical uses of TiO 2 in powder form have some drawbacks as well as the difficult reusability. In this work, 3D porous-structured TiO 2 @natural rubber (TNR) hybrid sheets with high photocatalytic performance were presented. TNR hybrid sheets prepared by a facile and low-cost method, which is based on the mixing of natural rubber (NR) latex (60% high ammonia) and ammoniacal TiO 2 (P25) suspension, followed by vacuum filtration through a sintered glass template to make a 3D porous network structure on the surface of the sheets. The obtained TNR sheet samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and reflection Fourier transformed infrared spectroscopy (FT-IR) techniques. The results showed that the surface morphologies of TNR hybrid sheets appeared as porous-structured which had high roughness and with various tiny pores on the surface. The photocatalytic properties of the prepared TNR hybrid sheets were tested using indigo carmine (IC) dye under UV light irradiation. It was found that the highest photodegradation efficiency was achieved with the TNR_5 wt% hybrid sheet sample. Compared with the sheets reported in previous works, the TNR sheet shows higher efficiencies than those sheets due to its higher amount of TiO 2 particles at the surface, more porous structure with high rough surface, and abundance of tiny pores on the TNR sheet surface. Moreover, the recyclability and stability of TNR sheet indicated that upon using 10 cycles (remains 98% efficiency), in which the stability of the sheet surface well-confirmed by SEM and XRD techniques, as well. From above the study, this 3D porous-structured TNR hybrid sheet could be a new alternative strategy for the water or wastewater treatment in industry concerning with the easy use, recovery, reusability and stability of the photocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.