System of linear equations is a common mathematical phenomenon which occurs in science and engineering problems. But fuzzy systems of linear equations are obtained when we deal with uncertain problems. Various methods are proposed by different authors to solve linear equations for both fuzzy and fully fuzzy systems. Here we have developed an alternative and straight forward arithmetic to handle uncertain interval and fuzzy values. In this arithmetic we write the interval into crisp form by some transformation and used the mathematical limit concept. Fuzzy values are converted into cut form and then the monotonic functions are operated through the proposed method. Two algorithms have proposed to solve Fully Fuzzy Linear System (FFLS) of equations. Finally some example problems are considered for both fuzzy and fully fuzzy system of linear equations and the obtained results are compared, which are found to be in good argument.
Traditional finite element method is a well-established method to solve various problems of science and engineering. Different authors have used various methods to solve governing differential equation of heat conduction problem. In this study, heat conduction in a circular rod has been considered which is made up of two different materials viz. aluminum and copper. In earlier studies parameters in the differential equation have been taken as fixed (crisp) numbers which actually may not. Those parameters are found in general by some measurements or experiments. So the material properties are actually uncertain and may be considered to vary in an interval or as fuzzy and in that case complex interval arithmetic or fuzzy arithmetic has to be considered in the analysis. As such the problem is discretized into finite number of elements which depend on interval/fuzzy parameters. Representation of interval/fuzzy numbers may give the clear picture of uncertainty. Hence interval/fuzzy arithmetic is applied in the finite element method to solve a steady state heat conduction problem. Application of fuzzy finite element method in the said problem gives fuzzy system of linear equations in general. Here new methods have also been proposed to handle such type of fuzzy system of linear equations. Corresponding results are computed and has been reported here.
In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.