In around 30% of families with colorectal adenomatous polyposis, no germline mutation in the previously-implicated genes APC, MUTYH, POLE, POLD1, or NTHL1 can be identified, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis was performed. We identified two unrelated individuals with differing compound-heterozygous loss-of-function germline mutations in the mismatch repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1g>a, c.2760delC, c.3001-2a>c) was indicated on RNA and protein level. Analysis of the diseased individuals’ tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST) and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the loss-of-function effect and causal relevance of the mutations. The pedigrees, genotypes, and the frequency of MSH3 mutations in the general population are consistent with an autosomal recessive mode of inheritance. Both index persons had an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing Constitutional Mismatch Repair Deficiency Syndrome (CMMRD). Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study we describe biallelic germline mutations of MSH3 in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis.
In a number of families with colorectal adenomatous polyposis or suspected Lynch syndrome/HNPCC, no germline alteration in the APC, MUTYH, or mismatch repair (MMR) genes are found. Missense mutations in the polymerase genes POLE and POLD1 have recently been identified as rare cause of multiple colorectal adenomas and carcinomas, a condition termed polymerase proofreading‐associated polyposis (PPAP). The aim of the present study was to evaluate the clinical relevance and phenotypic spectrum of polymerase germline mutations. Therefore, targeted sequencing of the polymerase genes POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3 and POLE4 was performed in 266 unrelated patients with polyposis or fulfilled Amsterdam criteria. The POLE mutation c.1270C>G;p.Leu424Val was detected in four unrelated patients. The mutation was present in 1.5% (4/266) of all patients, 4% (3/77) of all familial cases and 7% (2/30) of familial polyposis cases. The colorectal phenotype in 14 affected individuals ranged from typical adenomatous polyposis to a HNPCC phenotype, with high intrafamilial variability. Multiple colorectal carcinomas and duodenal adenomas were common, and one case of duodenal carcinoma was reported. Additionally, various extraintestinal lesions were evident. Nine further putative pathogenic variants were identified. The most promising was c.1306C>T;p.Pro436Ser in POLE. In conclusion, a PPAP was identified in a substantial number of polyposis and familial colorectal cancer patients. Screening for polymerase proofreading mutations should therefore be considered, particularly in unexplained familial cases. The present study broadens the phenotypic spectrum of PPAP to duodenal adenomas and carcinomas, and identified novel, potentially pathogenic variants in four polymerase genes.
To uncover pathogenic deep intronic variants in patients with colorectal adenomatous polyposis, in whom no germline mutation in the APC or MUTYH genes can be identified by routine diagnostics, we performed a systematic APC messenger RNA analysis in 125 unrelated mutation-negative cases. Overall, we identified aberrant transcripts in 8% of the patients (familial cases 30%; early-onset manifestation 21%). In eight of them, two different out-of-frame pseudoexons were found consisting of a 167-bp insertion from intron 4 in five families with a shared founder haplotype and a 83-bp insertion from intron 10 in three patients. The pseudoexon formation was caused by three different heterozygous germline mutations, which are supposed to activate cryptic splice sites. In conclusion, a few deep intronic mutations contribute substantially to the APC mutation spectrum. Complementary DNA analysis and/or target sequencing of intronic regions should be considered as an additional mutation discovery approach in polyposis patients.
To uncover novel causative genes in patients with unexplained adenomatous polyposis, a model disease for colorectal cancer, we performed a genome-wide analysis of germline copy number variants (CNV) in a large, well characterized APC and MUTYH mutation negative patient cohort followed by a targeted next generation sequencing (NGS) approach. Genomic DNA from 221 unrelated German patients was genotyped on high-resolution SNP arrays. Putative CNVs were filtered according to stringent criteria, compared with those of 531 population-based German controls, and validated by qPCR. Candidate genes were prioritized using in silico, expression, and segregation analyses, data mining and enrichment analyses of genes and pathways. In 27% of the 221 unrelated patients, a total of 77 protein coding genes displayed rare, nonrecurrent, germline CNVs. The set included 26 candidates with molecular and cellular functions related to tumorigenesis. Targeted high-throughput sequencing found truncating point mutations in 12% (10/77) of the prioritized genes. No clear evidence was found for autosomal recessive subtypes. Six patients had potentially causative mutations in more than one of the 26 genes. Combined with data from recent studies of early-onset colorectal and breast cancer, recurrent potential loss-of-function alterations were detected in CNTN6, FOCAD (KIAA1797), HSPH1, KIF26B, MCM3AP, YBEY and in three genes from the ARHGAP family. In the canonical Wnt pathway oncogene CTNNB1 (b-catenin), two potential gain-of-function mutations were found. In conclusion, the present study identified a group of rarely affected genes which are likely to predispose to colorectal adenoma formation and confirmed previously published candidates for tumor predisposition as etiologically relevant.Germline copy number variants (CNVs) have been recognized as the most prevalent type of structural genetic variation, which also predispose to human disease as lowpenetrance risk factors or high-penetrance mutations. 1,2 Recent research has identified potentially causative germline deletions and duplications for a number of sporadic and familial types of cancer. [3][4][5][6][7] In hereditary cancer syndromes, heterozygous microdeletions of single exons or whole genes contribute substantially to the mutation spectrum. 8,9 A plausible hypothesis therefore is that in particular deletion CNVs are part of the mutation spectrum of yet unidentified genes responsible for monogenic tumor syndromes for which no causative germline mutation in established genes has yet been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.