Persistent neural activity in the absence of a stimulus has been identified as a neural correlate of working memory, but how such activity is maintained by neocortical circuits remains unknown. Here we show that the inhibitory and excitatory microcircuitry of neocortical memory-storing regions is sufficient to implement a corrective feedback mechanism that enables persistent activity to be maintained stably for prolonged durations. When recurrent excitatory and inhibitory inputs to memory neurons are balanced in strength, but offset in time, drifts in activity trigger a corrective signal that counteracts memory decay. Circuits containing this mechanism temporally integrate their inputs, generate the irregular neural firing observed during persistent activity, and are robust against common perturbations that severely disrupt previous models of short-term memory storage. This work reveals a mechanism for the accumulation and storage of memories in neocortical circuits based upon principles of corrective negative feedback widely used in engineering applications.
Information about external stimuli is thought to be stored in cortical circuits through experience-dependent modifications of synaptic connectivity. These modifications of network connectivity should lead to changes in neuronal activity, as a particular stimulus is repeatedly encountered. Here, we ask what plasticity rules are consistent with the differences in the statistics of the visual response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object recognition. We introduce a method that allows inferring the dependence of the ‘learning rule’ on post-synaptic firing rate, and show that the inferred learning rule exhibits depression for low post-synaptic rates and potentiation for high rates. The threshold separating depression from potentiation is strongly correlated with both mean and standard deviation of the firing rate distribution. Finally, we show that network models implementing a rule extracted from data show stable learning dynamics, and lead to sparser representations of stimuli.
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatoryinhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory.
Neural oscillations play critical roles in information processing, communication between brain areas, learning, and memory. We have recently discovered that familiar visual stimuli can robustly induce 5-Hz oscillations in the primary visual cortex (V1) of awake mice after the visual experience. To gain more mechanistic insight into this phenomenon, we used in vivo patch-clamp recordings to monitor the subthreshold activity of individual neurons during these oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.